
Queueing Systems (2024) 106:1–66
https://doi.org/10.1007/s11134-023-09901-y

A queueing model of dynamic pricing and dispatch control
for ride-hailing systems incorporating travel times

Amir A. Alwan1 · Baris Ata1 · Yuwei Zhou1

Received: 31 January 2023 / Revised: 30 November 2023 / Accepted: 25 December 2023 /
Published online: 4 February 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Asystemmanagermakes dynamic pricing and dispatch control decisions in a queueing
network model motivated by ride hailing applications. A novel feature of the model
is that it incorporates travel times. Unfortunately, this renders the exact analysis of
the problem intractable. Therefore, we study this problem in the heavy traffic regime.
Under the assumptions of complete resource pooling and common travel time and
routing distributions, we solve the problem in closed form by analyzing the corre-
sponding Bellman equation. Using this solution, we propose a policy for the queueing
system and illustrate its effectiveness in a simulation study.

Keywords Ride-hailing · Dynamic pricing · Matching · Diffusion approximations ·
Heavy traffic analysis · Stochastic control

Mathematics Subject Classification 90B15 · 93E03 · 93E20 · 60J60 · 60K30

1 Introduction

This paper studies a dynamic control problem for a queueing model motivated by
taxi and ride hailing systems. In those systems, customers and drivers can be matched
centrally by a platform using web or mobile applications. In addition, the platform can
adjust the prices dynamically over time. We consider a city partitioned into a set of
geographical regions. Each such region should be thought of as a pick-up or drop-off
location. Simultaneously, cars reside in these regions waiting to pick up customers.
We use a queueingmodel to study this problem, following a growing number of papers
in the operations research literature. However, much of the relevant literature assumes
away the travel times between the pick-up and drop-off locations, see for example Ata

B Yuwei Zhou
yuwei.zhou@chicagobooth.edu

1 The University of Chicago Booth School of Business, Chicago, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11134-023-09901-y&domain=pdf
http://orcid.org/0000-0003-1266-7200

2 Queueing Systems (2024) 106:1–66

et al. [9] and the references therein, with a few exceptions, e.g., Braverman et al. [33]
and Banerjee et al. [19]. To the best of our knowledge, ours is the first paper to consider
joint pricing and dispatch problem with travel times. Incorporating travel times is a
key novelty of our model, but it leads to a significantly more challenging analysis.

We assume that the platform, also referred to as the system manager hereafter, has
two levers: pricing and dispatch controls. She seeks an effective policy that makes
both dynamic pricing and dynamic dispatch control decisions in order to maximize
the long-run average profit. We allow the prices to depend on time and the customer
location. Dynamically adjusting prices elicits two competing effects. On the one hand,
increasing prices increase the per-ride revenue for the platform. On the other hand,
customers are price sensitive, so higher prices result in lower customer demand. Dis-
patching refers to the process of matching a car with a customer requesting a ride and
constitutes an important operational decision for the platform.

We model a ride-hailing or taxi system as a closed queueing network with a fixed
number of jobs, denoted by n. There are I buffers, I single-server nodes, and an
infinite-server node in the stochastic processing network (SPN). The terms “server”
and “resource” will be used interchangeably to refer to a single-server node. Similarly,
the terms “buffer” and “class” will be used interchangeably. As such, jobs in buffer
i will be referred to as class i jobs, for i = 1, . . . , I . In addition to choosing prices
dynamically, the systemmanager can engage in J possible (dispatch) activities, where
each activity corresponds to a server serving jobs in a buffer. Following service at a
single-server node, jobs are routed to the infinite-server node. Jobs then continue their
service at the infinite-server node, after which they are probabilistically routed back to
the buffers. The infinite-server node models the travel times. This process continues
indefinitely.

In the context of our motivating application, jobs correspond to cars that circulate
in the system perpetually. The I buffers correspond to I city regions where cars wait
to get matched with a customer. In addition, the service rates at a single-server node
can be thought of as the customer arrival rate to the corresponding region, which
depends on the price. As a result, customer demand dynamically changes over time
as the platform varies the prices of rides. An activity corresponds to dispatching a car
from one region to serving an arriving customer possibly in another region. Thus, a
service completion at a single-server node corresponds to a car getting matched with a
customer. We assume that all customer requests that are not met immediately are lost.
After getting matched with a customer, the car must travel to pick up the customer
and bring him to his destination. A car picking up a customer and taking him to his
destination corresponds to the job getting routed to and served at the infinite server
node in the queueingmodel. That is, the infinite-server nodemodels the travel time of a
car from its initial dispatch time to the drop off time of the customer. Upon completing
service at the infinite server node, the job is routed to the buffer that is associated with
the customer’s destination. This is modeled through a probabilistic routing structure
as is usually done in the queueing literature. Although the SPN we study is motivated
by the ride-hailing and taxi systems, in what follows we use the queueing terminology
that is standard in the literature. However, we will occasionally make reference to our
motivating applications when intuition or interpretation are needed.

123

Queueing Systems (2024) 106:1–66 3

Ultimately, the system manager seeks to match the supply (cars) and (passenger)
demandwhilemaximizing her profit. Clearly, the availability of cars affects her pricing
and dispatch decisions. In practice, a large fraction of cars to be in transit typically, car-
rying passengers. For example, New York City Taxi and Limousine Commission [76]
reports that more than half of the cars occupied, carrying passengers, on average.
Therefore, travel times significantly affect availability of cars and accounting for them
is essential for modeling supply constraints accurately. As mentioned above, incor-
porating travel times makes the problem significantly more challenging. To ease the
analysis, we assume there is a single travel node. This assumption has two impli-
cations: First, the travel times between any two regions have the same distribution.
Second, upon completing service at the infinite-server node all job classes share the
same probabilistic routing structure. Admittedly, this is a restrictive assumption, but it
simplifies the analysis and allows us to incorporate the travel times into the model. We
view our model as an important first step in the analysis of ride-sharing network mod-
els that incorporate travel times. Although these assumptions lead to a crude model
of travel times, our model accounts for the effect of travel times on the availability of
cars explicitly.

However, even under the single travel node assumption, the problem is not amenable
to exact analysis. As such, we consider a diffusion approximation to it in the heavy
traffic asymptotic regime. In that regime, under the so called complete resource pooling
condition, see Harrison and López [57], we solve the problem analytically and derive
a closed-form solution for the optimal dynamic prices.

Notwithstanding these restrictive assumptions, the paper makes two contributions.
First, it incorporates the travel times in the model and solves the resulting dynamic
pricing and dispatch control problem analytically in the heavy traffic regime. Second,
it makes a methodological contribution by solving a drift-rate control problem on an
unbounded domain, which could be of interest in its own right.

The rest of the paper is structured as follows. Section2 reviews the literature. Sec-
tion3 presents the control problem for the ride-hailing platform, and the associated
Brownian control problem is derived formally in Sect. 4. The equivalent workload
formulation is formulated in Sect. 5 and it is solved in Sects. 6 and 7 by studying a
related Bellman equation. Section8 interprets the solution of the equivalent workload
formulation in the context of the original control problem and proposes a pricing and
dispatch policy. Section9 conducts a simulation study to illustrate the effectiveness
of the proposed policy. Section10 concludes the paper. There are two appendices:
Appendix A provides a formal derivation of the Brownian control problem, and addi-
tional proofs are given in Appendix B.

2 Literature review

Our paper is related to two streams of literature: the modeling and analysis of ride-
hailing and taxi systems and the dynamic control of queueing networks.

In recent years several authors have modeled ride-hailing and taxi systems using
queueing networks. A majority of this literature has focused on how pricing, dispatch
(matching), and relocation decisions can improve system performance. From a mod-

123

4 Queueing Systems (2024) 106:1–66

eling perspective, Ata et al. [9] and Braverman et al. [33] are most closely related to
ours. Ata et al. [9] model a ride-hailing system as a closed SPN with dispatch and
relocation control. Under heavy traffic conditions, they approximate the original con-
trol problem by a Brownian control problem (BCP). After reducing the BCP to an
equivalent workload formulation, they propose an algorithm to solve it numerically.
However, their model does not include travel times, whereas ours does. Incorporating
travel times leads to a significantly more challenging problem in the heavy traffic
limit under the diffusion scaling. On the other hand, Braverman et al. [33] model a
ride-hailing system as a closed queueing networks with travel times and relocation
control. By solving a suitable linear program, they propose a static routing policy and
prove that it is asymptotically optimal in a large market asymptotic regime under fluid
scaling. Hosseini et al. [59] extends the analysis of Braverman et al. [33] by designing
a dynamic relocation that outperforms the asymptotically optimal static policy in real-
istic problem instances. In a related study, Zhang and Pavone [89] uses a combination
of single-server and infinite-server queueingmodel to study the control of autonomous
vehicles. The authors derive an open loop policy by solving a linear program. Building
on this solution, they also propose an effective dynamic rebalancing policy.

Several other papers are at the intersection of ride-hailing and queueing, but differ
more in their modeling choices and analysis. Banerjee et al. [21] study pricing on a
single-regionmodel with a single travel time node and show that an optimal static pric-
ing policy performs well. Banerjee et al. [19] develop an approximation framework to
study vehicle sharing systems under pricing, matching, and repositioning policies for
several objective functions and under various system constraints (such as travel times,
welfare benchmarks, posted-price constraints). In particular, they develop algorithms
and show that the approximation ratio of the resulting policy improves as the number
of cars in each region grows. They also discuss how the proposed approach can be
applied to incorporate travel times between stations, show how the approximation ratio
changes under heavy-traffic regime, and illustrate how the results help quantify the
parameters that control the scaling behavior in such systems. Banerjee et al. [20] study
matching for a general closed queueing network that can be used to model ride-hailing
systems. They propose a family of state-dependent matching policies that do not use
any demand arrival rate information. Under a complete resource pooling assumption,
they show that the proportion of dropped demand under any such policy decays expo-
nentially as the number of supply units in the network grows. Afèche et al. [4] study
(demand) admission control and supply repositioning for a ride-hailing network with
strategic drivers. The authors focus on a stationary (fluid) demand model with persis-
tent geographic imbalances. Their analysis shows how admission control decisions can
influence the strategic behavior of drivers in the network. To be specific, the authors
show that strategically rejecting prospective passengers at low-demand locations may
be optimal in order to induce drivers to reposition to high-demand locations. Afèche
et al. [3] study optimal dynamic pricing and matching policy under demand shocks
with unpredictable duration. The authors focus, in contrast to Afèche et al. [3], on
non-stationary, short-lived demand imbalances, and focus on wage policies, rather
than operational levels, to influence driver repositioning. Özkan and Ward [78] model
a ride-hailing system as an open queueing network model with impatient customers.
They propose a matching policy and prove asymptotically optimality in the fluid scale

123

Queueing Systems (2024) 106:1–66 5

in a large market regime. Özkan [77] studies a fluid model with strategic drivers that
incorporates both pricing andmatching decisions, highlighting the importance of look-
ing at multiple controls simultaneously. Besbes et al. [27] study the effect of pick up
and travel times on capacity planning for a ride-hailing system bymodeling it as a spa-
tial multi-server queue. Chen et al. [38] proposes static and dynamic policies that are
asymptotically optimal. Varma et al. [85] studies an open network model and proposes
an asymptotically optimal policy. Examples of other papers that use spatial models
for pricing include Yang et al. [88], Jacob and Roet-Green [63] and Hu et al. [60].
On the methodological side, Momcilovic et al. [75] views both jobs and servers as
resources and develops a general modeling framework, which can readily be used to
model ride-hailing as well as other service systems.

Several other researchers focused on different aspects of the ride-hailing and taxi
systems without using queueing theoretic models. These include Wang et al. [86],
Ata et al. [8], Bertsimas et al. [25], Besbes et al. [26], Bimpikis et al. [29], Cachon
et al. [35], Castillo et al. [36], Chen and Sheldon [39], Garg and Nazerzadeh [43],
Gokpinar and Selcuk [45], Guda and Subramanian [48], He et al. [58], Hu et al. [60],
Hu and Zhou [61], Korolko et al. [68] and Lu et al. [73].

This paper also contributes to the broader literature on dynamic control of queueing
systems. Two prominent approaches in that literature are: (i) Markov decision process
(MDP) formulations, and (ii) heavy traffic approximations. Intuitively, the workload
problem studied in Sects. 5–7 relates to the service rate and admission control prob-
lems studied using MDP formulations, see for example Stidham and Weber [83] and
references therein. The most closely related papers are George and Harrison [44] and
Ata [5]. These papers study the service rate control problems for an M/M/1 queue
and provide closed-form solutions; also see Ata and Shneorson [16], Ata and Zachari-
adis [18], Adusumilli and Hasenbein [2] and Kumar et al. [71].

The second approach is pioneered by Harrison [49], also see Harrison [52, 53]. In
particular, a number of papers studied drift rate control problems for one-dimensional
diffusions arising under heavy traffic approximations, see Ata et al. [11], Ata [6],
Ghosh and Weerasinghe [46, 47], Rubino and Ata [80], Kim and Ward [65], and Ata
and Tongarlak [17]. More recently, Ata and Barjesteh [7] and Ata et al. [12] studied
drift-rate control problems arising in different contexts such as volunteer capacity
management and make-to-stock manufacturing. The analysis of the drift-rate control
problem solved in this paper differs significantly from the analysis in those papers
because it involves a quadratic cost of drift rate, unbounded set of feasible drift rates,
and an unbounded state space. The combination of these features lead to a more chal-
lenging analysis. Our paper also makes a modeling contribution by formulating the
dynamic dispatch and pricing control problem that incorporates travel times. Further-
more, it proposes an analytically tractable approximation in the heavy traffic limit and
solves that in closed form.

Lastly, our paper draws on the literature of the asymptotic analysis of closed queue-
ing networks. For example, a simpler version of our problem with a single region
(I = 1) is related to the classical repairman problem, see Iglehart [62] and the refer-
ences therein. Similarly, for examples of the asymptotic analysis of closed queueing
systemswith infinite-server queues, we refer the reader to Kogan et al. [67], Smorodin-
skii [82], Kogan and Lipster [66], and Krichagina and Puhalskii [69].

123

6 Queueing Systems (2024) 106:1–66

1 2 3 4

1 2 3 4

1 2 3 4
6 5 8 7 10 9

q1

q2

q4

q3

Fig. 1 A network with four regions and ten dispatch activities. The open-ended rectangles are the buffers,
the circles are the single servers, and the oval is an infinite-server node. The ten activities are represented
by the arrows between the buffers and servers. The numbers on the arrows indicate their index. Activities
1, 2, 3, and 4 are local dispatch activities while activities 5 through 10 are non-local dispatch activities. The
arrows from the infinite-server to the buffers represent probabilistic rerouting of jobs in the network

3 Model

Motivated by the taxi and ride-hailing application described in the introduction, we
consider a closed queueing network with n jobs, I buffers, I single-server nodes, and
one infinite-server node. Figure1 displays an illustrative network with I = 4 and
J = 10, also see Sect. 9 for the motivation behind this example.

As mentioned earlier, in addition to dynamic pricing decisions, the systemmanager
also makes dispatch decisions dynamically. There are J dispatch activities she can
choose from. Each dispatch activity involves a unique buffer and a unique server–we
use the terms single-server node and server interchangeably. Let s(j) and b(j) denote
the server and the buffer, respectively, associated with activity j for j = 1, . . . , J . In
otherwords, activity j is undertakenby server s(j) and it servers jobs in bufferb(j).We
describe the association between activities and resources by the capacity consumption
matrix A and the association between activities and buffers by the constituency matrix
C . That is, A is the I × J matrix given by

Ai j =
{
1, if s(j) = i,
0, otherwise,

(1)

and C is the I × J matrix given by

Ci j =
{
1, if b(j) = i,
0, otherwise.

(2)

123

Queueing Systems (2024) 106:1–66 7

Let Ai denote the set of activities server i undertakes. Similarly, let Ci denote the set
of activities that serve buffer i . We have that

Ai = { j : Ai j = 1
}
, (3)

Ci = { j : Ci j = 1
}
. (4)

For each activity j = 1, . . . , J , we associate a unit rate Poisson process N j .We also
associate a unit rate Poisson process N0 with the infinite-server node. The processes
N0, N1, . . . , NJ are mutually independent. The service rate at the infinite-server node
is denoted byη > 0.Wedenote the service rate for activity j at time t byμ j (t) for t ≥ 0
and j = 1, . . . , J . The system manager chooses prices p(t) = (pi (t)) dynamically
over time, where pi (t) denotes the price charged to customers who seek rides from
region i at time t . As the reader will see below, these prices ultimately determine
activity service rates μ j (t) for j = 1, . . . , J and t ≥ 0. We assume pi (t) ∈ [p

i
, pi]

for t ≥ 0, where 0 ≤ p
i
< pi < ∞. The price sensitivity of demand is captured by a

nonnegative demand function � : P → R
I+, where P = ∏I

i=1[p
i
, pi]. Namely, the

demand rate vector at time t , denoted by λ(t), is given by1

λ(t) = �(p(t)) = (�1(p1(t)), . . . , �I (pI (t)))
′ , t ≥ 0. (5)

We make the following monotonicity assumption to simplify the analysis:

Assumption 1 The demand rate function is strictly decreasing in price, i.e., �i (pi) is
strictly decreasing in pi for i = 1, . . . , I .

From this monotonicity assumption, it follows that �i (·) has an inverse function,
denoted by�−1

i (·). Moreover, the pricing decisions can be replaced with choosing the
demand rate vector λ(t) dynamically over time. This is convenient for our analysis.
In order to proceed with that approach, we first define the set of admissible demand
rate vectors L ⊆ R

I+ as follows:

L =
I∏

i=1

Li , (6)

where Li = [�i (pi),�i (p
i
)] for i = 1, . . . , I . Denoting �−1(x) =

(
�−1

1 (x1), . . . ,

�−1
I (xI)

)′
for x ∈ L, it is easy to see that �−1 is the inverse function of �. Viewing

the demand rates as the platform’s pricing control, we define the revenue rate function
π : L → R as follows:

π(x) =
I∑

i=1

xi�
−1
i (xi), x ∈ L. (7)

1 The customer demand rate in region i , λi (t), depends only on the price pi (t).

123

8 Queueing Systems (2024) 106:1–66

We also make the following regularity assumptions for the revenue rate function:

Assumption 2 The revenue rate function π is: (a) three-times continuously differen-
tiable and strictly concave on L, and (b) has a maximizer in the interior of L.

Upon completing service at a single-server node, each job goes next to the infinite-
server node. Once its service there is complete, the job next joins buffer i with
probability qi > 0 for i = 1, . . . , I where

∑I
i=1 qi = 1. The routing probability

vector q = (qi) does not depend on the single-server node the job departed from
prior to joining the infinite-server node. In other words, customers’ destination dis-
tribution is identical across different origins. This is a restrictive assumption, but it
simplifies the analysis significantly and enables us to incorporate travel times into the
model. As discussed in the Introduction, we view this as an important first step in
the analysis of ride-sharing network models that incorporate travel times. In order to
model this probabilistic routing structure mathematically, we let ψ = {ψ(l), l ≥ 1}
denote a sequence of I -dimensional i.i.d. random vectors with P (ψ(1) = ei) = qi

for i = 1, . . . , I , where ei is an I -dimensional vector with one in the i th component
and zeros elsewhere. Then letting

�(m) =
m∑

l=1

ψ(l) for m ≥ 1, (8)

we note that the i th component of �(m), denoted by �i (m), represents the total
number of jobs routed to buffer i among the first m jobs that have finished service at
the infinite-server node.

As discussed earlier, there are two types of control decisions that the system
manager must make. First, she must choose an I -dimensional demand rate process
λ = {λ(t), t ≥ 0}. This is equivalent to making dynamic pricing decisions. Recall
that the customer arrival process at single-server node i corresponds to its service
process. Because these customers can be transported by cars in regions corresponding
to activities j ∈ Ai , we let

μ j (t) = λi (t) for j ∈ Ai , i = 1, . . . , I , and t ≥ 0. (9)

This defines the J -dimensional service rate process μ = {μ(t), t ≥ 0}, where
μ(t) = (μ j (t)

)
. Second, she must decide on how servers allocate their time to various

(dispatch) activities. This decision takes the form of cumulative allocation processes
Tj = {Tj (t), t ≥ 0

}
for j = 1, . . . , J . In particular, Tj (t) represents the cumulative

amount of time server s(j) devotes to activity j (serving class b(j) jobs) during [0, t].
Next, we introduce the system dynamics equations that govern the movement of

jobs in the network. To that end, we let Q0(t) and Qi (t) denote the number of jobs in
the infinite-server node and in buffer i at time t , respectively, for i = 1, . . . , I . We also
let A0(t) and Ai (t) be the total number of jobs that have arrived to the infinite-server

123

Queueing Systems (2024) 106:1–66 9

node and to buffer i by time t , respectively, for i = 1, . . . , I . Then we have that

A0(t) =
J∑

j=1

N j

(∫ t

0
μ j (s) dTj (s)

)
, t ≥ 0, (10)

Ai (t) = �i

(
N0

(
η

∫ t

0
Q0(s) ds

))
, t ≥ 0. (11)

Moreover, letting D0(t) and Di (t) denote the total number of jobs that have left the
infinite-server node and buffer i by time t , respectively, for i = 1, . . . , I , we have that

D0(t) = N0

(
η

∫ t

0
Q0(s) ds

)
, t ≥ 0, (12)

Di (t) =
∑
j∈Ci

N j

(∫ t

0
μ j (s) dTj (s)

)
, t ≥ 0. (13)

We refer to the (I + 1)-dimensional process Q = (Q0, Q1, . . . , QI)
′ as the queue

length process, whose dynamics is given next:

Qi (t) = Qi (0) + Ai (t) − Di (t) for i = 0, 1, . . . , I and t ≥ 0, (14)

where Q(0) is the vector of initial queue lengths such that
∑I

i=0 Qi (0) = n. Letting
Ii (t) denote the cumulative amount of time that server i is idle during the interval
[0, t] for i = 1, . . . , I , we have that

Ii (t) = t −
∑
j∈Ai

T j (t), t ≥ 0, (15)

or in matrix notation, I (t) = et − AT (t) for t ≥ 0. Note that Eqs. (10) and (14) imply
that

I∑
i=0

Qi (t) =
I∑

i=0

Qi (0) = n for t ≥ 0,

expressing the fact that the total number of jobs in the system remains fixed in a closed
network.

In order to state the platform’s objective and its control problem formally, we
introduce two vectors of cost parameters h = (h0, h1, . . . , hI)

′ ∈ R
I+1+ and c =

(c1, . . . , cI)
′ ∈ R

I+. In the context of the ride-hailing system, the platform incurs
a fuel cost at a rate of h0 per traveling car. Moreover, for i = 1, . . . , I , there is a
holding cost at a rate of hi for each car waiting for a ride in region i , reflecting the
fact that no driver likes sitting idle. We assume that hi > h0 for all i = 1, . . . , I .
To be more specific, we assume h0 corresponds to the costs of driving the car for an
hour, e.g., fuel, depreciation, etc. In contrast, hi (i = 1, . . . , I) mainly captures the

123

10 Queueing Systems (2024) 106:1–66

driver’s dislike of waiting for a customer. It may also include the opportunity cost of
his time and costs associated with fuel consumption and depreciation. Assuming the
latter costs are larger justifies the assumption of hi > h0 for i = 1, . . . , I . Finally, for
i = 1, . . . , I , there is an idleness cost at the rate of ci per unit of time server i is idle.
This represents the lost revenue from picking up customers arriving to region i and
goodwill loss.2 A control policy is denoted by (T , λ) and

must satisfy the following conditions:

T , λare nonanticipating with respect toQ, (16)

T , Iare nondecreasing and continuous withT (0) = I (0) = 0, (17)

λ(t) ∈ L for all t ≥ 0, (18)

Qi (t) ≥ 0 for all t ≥ 0, i = 0, 1, . . . , I . (19)

Equation (16) expresses the fact that the policy can only depend on observable quan-
tities. Equation (17) is natural given the interpretations of the processes T and I .
Equation (18) requires that λ come from the set of achievable demand rates. Equa-
tion (19) expresses the fact that queue lengths are nonnegative. The arriving customer
demand is allocated to cars waiting in various buffers through the dispatch activities
j = 1, . . . , J , see for example Eqs. (10) and (13). Given a control policy (T , λ), we
define the cumulative profit collected up to time t as

V (t) =
∫ t

0

[
π (λ(s)) − h′Q(s)

]
ds − c′ I (t), t ≥ 0. (20)

The platform’s control problem is to choose a policy (T , λ) so as to

maximize lim inf
t→∞

1

t
E [V (t)] (21)

subject to (10)–(20). (22)

Because control problem (21) and (22) in its original form is not amenable to exact
analysis, the next section considers a related control problem in an asymptotic regime
where the number of cars gets large and derives the approximating Brownian control
problem. The Brownian control problem is an approximation to the original problem,
yet it is far more tractable.

4 Brownian control problem

Following an approach that is similar to the one taken in Harrison [49], this section
develops a Brownian approximation to the control problem presented in Sect. 3. Many
authors have proved heavy traffic limit theorems to rigorously justify such Brownian
approximations—see for example Harrison [51],Williams [87], Kumar [70], Bramson

2 One can assume ci ≥ p∗
i = �−1

i (λ∗
i) naturally, where λ∗ is defined in Eq. (23) below.

123

Queueing Systems (2024) 106:1–66 11

and Dai [31], Stolyar [84], Bell and Williams [23, 24], Ata and Kumar [10], Ata
and Olsen [14, 15] and references therein. We do not attempt to prove a rigorous
convergence theorem in this paper, but refer the reader to Harrison [49, 52, 53] for
elaborate and intuitive justifications of the approximation procedure we follow.

The approximation procedure starts by solving the following static pricing problem
(existence of the optimal solution is guaranteed by Assumption 2), which helps us
articulate the heavy traffic assumption that underlies the mathematical development
to follow. We set

λ∗ = arg max
λ∈L

π(λ). (23)

Recall from Assumption 2 that we assume λ∗ is in the interior of L, i.e., λ∗ ∈ int(L).
The vector λ∗ represents the average demand rates that would result in the largest
revenue rate ignoring variability in the system. Note that the corresponding nominal
service rates for the various activities are given by3

μ∗
j = λ∗

i for j ∈ Ai . (24)

Using these nominal service rates,we define an I ×J input–outputmatrix R as follows:

Ri j = μ∗
j Ci j , i = 1, . . . , I , j = 1, . . . , J . (25)

Following Harrison [49, 52], we interpret Ri j as the long-run average rate of class
i material consumed per unit of activity j under the nominal service rates μ∗

j for
j = 1, . . . , J . We also define the I -dimensional input vector ν as

νi = qiη, i = 1, . . . , I . (26)

We interpret νi as the long-run average rate of input into buffer i from the infinite-
server node. As a preliminary to stating the heavy traffic assumption, we introduce the
notion of local activities. In the context of the motivating application, it corresponds
to a customer in a region being picked up by a car in the same region. Using the
terminology that is standard in queueing theory, it corresponds to a server processing
its own buffer. Without loss of generality, we assume that the first I activities are local.
That is,

s(j) = b(j) = j for j = 1, . . . , I .

This is equivalent to assuming that the first I columns of matrices A and C constitute
the I × I dimensional identity matrix. The following is the heavy traffic assumption:

3 In particular, for all j , μ∗
j =∑I

i=1 λ∗
i Ai j . This is true because there exists only one i such that Ai j
= 0

for each j = 1, . . . , J . That is, an activity only uses one server. In matrix notation, μ∗ = A′λ∗, where A′
is the transpose of A.

123

12 Queueing Systems (2024) 106:1–66

Assumption 3 There exists a unique x∗ ∈ R
J such that

x∗
j = min{1, ν j

λ∗
j
}, j = 1, . . . , I , (27)

Rx∗ = ν, (28)

Ax∗ = e, (29)

x∗ ≥ 0. (30)

The vector x∗ is referred to as the nominal processing plan and the component x∗
j

can be interpreted as the long-run average rate at which activity j is undertaken.
Equation (30) says that all nominal activity levels must be non-negative. Equation (29)
means that under the nominal processing plan, servers are fully utilized. Equation (28)
is a flow balance condition which says that the rate of jobs leaving the buffers equals
the rate of jobs entering the buffers under the nominal processing plan. Note that by
Equations (25) and (28) we have

∑
j∈Ci

μ∗
j x j = qiη for each i , which then implies

that (μ∗)′x∗ = η by summing over i . We interpret (μ∗)′x∗ as the rate of jobs entering
the infinite-server node under the nominal processing plan, and Assumption 3 ensures
that this equals the service rate at the infinite-server node.4

Equation (27) ensures that local activities are used at maximal rates. In the context
of the motivating application, this means customer demand is met by cars in the same
region as much as possible.

Following Harrison [52], we call activity j basic if x∗
j > 0, whereas it is called

nonbasic if x∗
j = 0. We let b denote the number of basic activities. After possibly

relabeling, we assume without loss of generality that activities 1, . . . , b are basic and
that activities b + 1, . . . , J are nonbasic. Recall that the first I of them are the local
activities. As done in [52], we partition the matrices R and A as follows:

R = [H K] and A = [B N] , (31)

where H , B ∈ R
I×b and K , N ∈ R

I×(J−b). The submatrices H and B correspond to
the basic activities of R and A, respectively,while the submatrices K and N correspond
to the nonbasic activities.

In order to derive the approximating Brownian control problem, we consider a
sequence of closely related systems indexed by the total number of jobs n. The formal
limit of this sequence as n → ∞ is the approximating Brownian control problem. We
attach a superscript of n to quantities associated with the nth system in the sequence.
To be specific, we define the scaled demand rate function �n : P → R

I+ by

�n(x) = n�(x), x ∈ P. (32)

4 Based on intuition from the classical M/M/∞ queue, this condition implies that the steady-state fraction
of jobs in the infinite-server node under the nominal processing plan is equal to one as the number of jobs
in the system grows, i.e. as n → ∞.

123

Queueing Systems (2024) 106:1–66 13

Then we define the set of admissible scaled demand rate vectors Ln as the following:

Ln =
{
λn ∈ R

I+ : λn = �n(p) for some p ∈ P
}

. (33)

We note from Eqs. (5), (6), (32) and (33) that Ln = nL, and that �n has the inverse

function (�n)−1 (x) =
((

�n
1

)−1
(x1), . . . ,

(
�n

I

)−1
(xI)

)′
for x ∈ Ln . We define the

scaled revenue rate function πn as follows:

πn(x) =
I∑

i=1

xi
(
�n

i

)−1
(xi), x ∈ Ln . (34)

Observing that nx ∈ Ln if and only if x ∈ L, it can equivalently be shown that5

πn(nx) = nπ(x) = n
I∑

i=1

xi�
−1
i (xi), x ∈ L. (35)

Therefore, in the nth system, the revenue rate process is simply scaled by n. We also
scale the holding cost rates hn and the idleness cost rates cn as follows:

hn
i = hi√

n
, i = 0, 1, . . . , I , (36)

cn
i = √

nci , i = 1, . . . , I . (37)

Lastly, we allow the mean travel time (1/η) to vary with n as follows:

ηn = η + η̂√
n
, (38)

where η̂ ∈ R. As observed in Kogan and Lipster [66] and Ata et al. [12], under our
heavy traffic assumption we expect that the queue lengths at the buffers to be of order√

n and that the number of jobs in the infinite-server node be of order n. Therefore,
we define the centered and scaled queue length processes as follows:

Zn
0 (t) = 1√

n

(
Qn

0(t) − n
)

and Zn
i (t) = 1√

n
Qn

i (t) for i = 1, . . . , I , t ≥ 0.

(39)

Observe that since
∑I

i=0 Qn
i (t) = n for all t ≥ 0, it follows that

∑I
i=0 Zn

i (t) = 0 for
all t ≥ 0.

As argued in Harrison [49] (see also Harrison [52, 53]), any policy worthy of
consideration satisfies T n(t) ≈ x∗t , for all t ≥ 0 and large n. That is, the nominal

5 The first equality in (35) is proved by applying (34) and noting that
(
�n)−1

(nx) = �−1(x) for x ∈ L.
The second equality in (35) then follows by (7).

123

14 Queueing Systems (2024) 106:1–66

allocation rate x∗ given in Assumption 3 should give a first-order approximation to
the allocation rates of the various activities under policy T n . However, the system
manager can choose the second-order, i.e., order 1/

√
n, deviations from that. In order

to capture such deviations from the nominal rates, we define the centered and scaled
processes as follows:

Y n
j (t) = √

n
(

x∗
j t − T n

j (t)
)

, j = 1, . . . , J , t ≥ 0, (40)

Similarly, in the heavy traffic regime, we expect the servers to be always busy to a
first-order approximation, but they may incur idleness on the second order, i.e., order
1/

√
n. As such, we define the scaled idleness processes as follows:

U n
i (t) = √

nI n
i (t), i = 1, . . . , I , t ≥ 0. (41)

Then, it follows from Eqs. (15) and (29) that

U n
i (t) =

∑
j∈Ai

Y n
j (t), i = 1, . . . , I , t ≥ 0. (42)

In addition, we define the centered and scaled demand and service rate processes,
respectively, as follows:

ζ n
i (t) = 1√

n

(
λn

i (t) − nλ∗
i

)
, i = 1, . . . , I , t ≥ 0, (43)

κn
j (t) = 1√

n

(
μn

j (t) − nμ∗
j

)
, j = 1, . . . , J , t ≥ 0. (44)

Note that by Eq. (9) we have κn
j (·) = ζ n

i (·) for each j ∈ Ai . Finally, we define the
centered cumulative profit function. To do so, we first introduce the auxiliary function
Ṽ n that will serve as the centering function. To be specific, we define

Ṽ n(t) = n
[
π
(
λ∗)− hn

0

]
t = nπ

(
λ∗) t − √

nh0t, t ≥ 0, (45)

where the second equality follows from the definition of hn
0, see Eq. (36). Note that

Ṽ n(t) does not depend on the system manager’s control. Therefore, instead of max-
imizing the average profit, she can focus on minimizing the average cost, where the
cumulative cost up to time t , denoted by V̂ n(t), is defined as follows:

V̂ n(t) = Ṽ n(t) − V n(t), t ≥ 0. (46)

We then proceed with replacing the processes Zn , Y n , U n , ζ n , κn , and V̂ n with their
formal limits Z , Y , U , ζ , κ , and ξ , respectively, as n → ∞. In particular, the cost

123

Queueing Systems (2024) 106:1–66 15

process ξ in the Brownian approximation is given by

ξ(t) =
∫ t

0

(
I∑

i=1

αiζ
2
i (s) +

I∑
i=0

hi Zi (s)

)
ds + c′U (t), t ≥ 0, (47)

where αi = −
(
�−1

i

)′
(λ∗

i)− (λ∗
i /2)×

(
�−1

i

)′′
(λ∗

i) > 0 for i = 1, . . . , I . The steps

outlining the formal derivation of the Brownian Control Problem and of Eq. (47) are
given in Appendix A.

The Brownian control problem (BCP) is given as follows: Choose processes Y =(
Y j
)
and ζ = (ζi) that are nonanticipating with respect to B so as to

minimize lim sup
t→∞

1

t
E [ξ(t)] (48)

subject to

Zi (t) = Bi (t) − qiη

∫ t

0

I∑
i=1

Zi (s) ds −
∑
j∈Ci

∫ t

0
x∗

j κ j (s) ds

+
∑
j∈Ci

μ∗
j Y j (t), i = 1, . . . , I , t ≥ 0, (49)

Z0(t) = −
I∑

i=1

Zi (t), t ≥ 0, (50)

U (t) = AY (t), t ≥ 0, (51)

κ j (t) = ζi (t) for j ∈ Ai , i = 1, . . . , I , t ≥ 0, (52)

Zi (t) ≥ 0, i = 1, . . . , I , t ≥ 0, (53)

U is nondecreasing with U (0) = 0, (54)

where B = {B(t), t ≥ 0} is an I -dimensional Brownian motion with starting state
B(0) ≥ 0 that has drift rate vector γ = (γi) where γi = η̂qi and covariance matrix �

given by

�i i = qiη +
∑
j∈Ci

μ∗
j x∗

j and �i i ′ = qi qi ′η for i, i ′ = 1, . . . , I , i
= i ′.

(55)

Although the BCP (49) and (52) is simpler than the original control problem that it
approximates, it is not easy to solve because it is a multidimensional stochastic control
problem. Thus, we further simplify it in Sect. 5 and derive an equivalent workload
fomulation that is one-dimensional under the complete resource pooling condition
which we solve analytically in Sect. 6.

123

16 Queueing Systems (2024) 106:1–66

5 Equivalent workload formulation

As a preliminary to the derivation of the workload problem, letting Z = (Z1, . . . , Z I)
′

and using Eq. (25), we first rewrite Eq. (49) in vector form as follows:

Z(t) = B(t) − ηq
∫ t

0
e′Z(s) ds − C diag(x∗)

∫ t

0
κ(s) ds + RY (t), t ≥ 0, (56)

where e is an I -dimensional vector of ones and diag(x∗) is the J × J diagonal matrix
whose (j, j)th element is x∗

j .
Motivatedby thedevelopment inHarrison andVanMieghem[56] andHarrison [52],

we define the space of reversible displacements as follows:

N =
{

H yB : ByB = 0, yB ∈ R
b
}

, (57)

where yB ∈ R
b is the vector consisting of the components of y indexed by the basic

activities j = 1, . . . , b. We letM = N⊥ be the orthogonal complement of the space
N and call d = dim(M) the workload dimension. Any d × I matrix M whose rows
form a basis forM is called a workload matrix. Lemma 1 provides a canonical choice
of the workload matrix M based on the notion of communicating buffers, which is
defined next, seeAta et al. [9]. Also seeHarrison and López [57] for a related definition
of communicating servers.

Definition 1 Buffers i and i ′ are said to communicate directly if there exist basic
activities j and j ′ such that i = b(j), i ′ = b(j ′), and s(j) = s(j ′). That is, buffers i
and i ′ are served by a common server using basic activities. Buffers i and i ′ are said
to communicate if there exist buffers i1, . . . , il such that i1 = i , il = i ′, and buffer is

communicates directly with buffer is+1 for s = 1, . . . , l − 1.

Buffer communication is an equivalence relation. Thus, the set of buffers can be
partitioned into L disjoint subsets where all buffers in the same subset communicate
with each other. We call each subset a buffer pool and denote the lth buffer pool by
Pl , l = 1, . . . , L . Associated with each buffer pool is a server pool. The lth server
pool Sl is defined as follows:

Sl = {k : ∃ j ∈ {1, . . . , b} s.t. s(j) = k and b(j) ∈ Pl} , l = 1, . . . , L. (58)

In words, server pool l consists of all servers that can serve a buffer in buffer pool l
using a basic activity. Note that since the buffer pools partition the buffers, it follows
from Eq. (58) that the server pools partition the servers. Thus, the buffer pools and
the server pools are in a one-to-one correspondence. As a result, there is an equivalent
notion of server communication, but we stick with the definition of buffer communica-
tion for mathematical convenience. The following lemma characterizes the workload
dimension and the workload matrix, see Appendix B for its proof.

123

Queueing Systems (2024) 106:1–66 17

Lemma 1 The workload dimension equals the number of buffer pools, i.e., d = L.
Furthermore, the L × I matrix M given by

Mli =
{
1, if i ∈ Pl ,

0, otherwise,
(59)

for l = 1, . . . , L and i = 1, . . . , I constitutes a canonical workload matrix.

To facilitate the derivation of the workload state dynamics, we define the L × I matrix
G as follows:

Glk = λ∗
k 1{k ∈Sl }, l = 1, . . . , L, k = 1, . . . , I . (60)

That is, the lth row of G, (Gl1, . . . , Gl I) contains the nominal service rates for those
servers in server pool l and zeros for the rest of the servers. The next lemma provides
a useful result that helps us derive the workload problem. It is proved in Appendix B.

Lemma 2 We have that M R = G A.

We define the L-dimensional workload process W = {W (t), t ≥ 0} as

W (t) = M Z(t), t ≥ 0, (61)

whose lth component represents the total number of jobs for the lth server pool at time
t for l = 1, . . . , L . By Eq. (61) and Lemma 2, we arrive at the following equation
which describes the evolution of the workload process:

W (t) = χ(t) − Mηq
∫ t

0
e′Z(s) ds − MCdiag(x∗)

∫ t

0
κ(s) ds + GU (t), t ≥ 0,

(62)

where χ(t) = M B(t), so that χ = {χ(t), t ≥ 0} is a L-dimensional Brownianmotion
with drift vector Mγ , covariance matrix M�M ′, and starting state χ(0) = M B(0) ≥
0.

Next, we introduce a closely related control problem referred to as the reduced
Brownian control problem (RBCP). Its state descriptor is the workload process W . To
be more specific, the RBCP involves choosing a policy (Z , U , ζ) that is nonanticipat-
ing with respect to χ so as to

minimize lim sup
t→∞

1

t
E

[∫ t

0

(
I∑

i=1

αiζ
2
i (s) +

I∑
i=1

(hi − h0)Zi (s)

)
ds + c′U (t)

]

(63)

subject to

W (t) = M Z(t), t ≥ 0, (64)

123

18 Queueing Systems (2024) 106:1–66

W (t) = χ(t) − Mηq
∫ t

0
e′Z(s) ds − MCdiag(x∗)

∫ t

0
κ(s) ds + GU (t), t ≥ 0,

(65)

Z(t) ≥ 0 for t ≥ 0, (66)

U is nondecreasing with U (0) = 0, (67)

κ(t) = A′ζ(t) for t ≥ 0. (68)

The BCP (48) and (52) and the RBCP (63) and (68) are equivalent as shown by the
next proposition, see Appendix B for its proof.

Proposition 1 Every admissible policy (Y , ζ) for the BCP (48)–(52) yields an admis-
sible policy (Z , U , ζ) for the RBCP (63)–(68) and these two policies have the same
cost. On the other hand, for every admissible policy (Z , U , ζ) of the RBCP, there
exists an admissible policy (Y , ζ) for the BCP whose cost is equal to that of the policy
(Z , U , ζ) for the RBCP.

Hereafter, we make the complete resource pooling assumption that corresponds
to having a single resource pool in our context, see Assumption 4 below. Harrison
and López [57] observes that the complete resource pooling assumption leads to
a one-dimensional workload formulation, also see Ata and Kumar [10]. Similarly,
Assumption 4 allows us to formulate a one-dimensional workload formulation that is
equivalent to the RBCP formulated in Eqs. (63) and (68).

Assumption 4 All buffers communicate under the nominal processing plan, i.e., L =
1.

One can show that this assumption is equivalent to having all servers communicate
in the sense of Harrison and López [57]. Proposition 3 of Harrison and López [57]
characterizes further equivalent conditions that ensure complete resource pooling,
also see Theorem 6.1 of Bramson and Williams [32]. To gain further insight, consider
the bipartite graph whose nodes on one side are the I (single-) servers, and they are
the I buffers on the other side. The basic activities constitute the edges. It follows
from Proposition 3 of Harrison and López [57] that the complete resource pooling
condition is equivalent to the bipartite graph being a tree.Moreover, because all servers
communicate, they can all help each other and effectively act as a single-server in the
heavy traffic limit, see Section 7 of Harrison and López [57].

The following lemma allows us to simplify the RBCP under Assumption 4, see
Appendix B for its proof.

Lemma 3 Under Assumption 4, we have M = e′ and G = (λ∗)′. Moreover, we have
that

Mηq = η and MCdiag(x∗)A′ = e′. (69)

123

Queueing Systems (2024) 106:1–66 19

Using Lemma 3, the RBCP can be equivalently written as follows: Choose a policy
(Z , U , ζ) that is nonanticipating with respect to χ so as to

minimize lim sup
t→∞

1

t
E

[∫ t

0

(
I∑

i=1

αiζ
2
i (s) +

I∑
i=1

(hi − h0)Zi (s)

)
ds + c′U (t)

]

(70)

subject to

W (t) =
I∑

i=1

Zi (t), t ≥ 0, (71)

W (t) = χ(t) − η

∫ t

0
W (s) ds −

∫ t

0

I∑
i=1

ζi (s) ds +
I∑

i=1

λ∗
i Ui (t), t ≥ 0, (72)

Z(t) ≥ 0 for t ≥ 0, (73)

U is nondecreasing with U (0) = 0, (74)

where χ is a one-dimensional Brownian motion with drift rate parameter a = e′γ and
variance parameter σ 2 = e′�e and starting state χ(0) =∑I

i=1 Bi (0) ≥ 0.
To further simplify the RBCP, we define the cost function c by

c(x) = min

{
I∑

i=1

αiζ
2
i : e′ζ = x, ζ ∈ R

I

}
, x ∈ R, (75)

and the optimal (state-dependent) drift rate function ζ ∗ by

ζ ∗(x) = argmin

{
I∑

i=1

αiζ
2
i : e′ζ = x, ζ ∈ R

I

}
, x ∈ R. (76)

Defining α̂ =∑I
i=1 1/αi , the following lemma characterizes these functions—similar

results are found in Çelik and Maglaras [37] and Ata and Barjesteh [7].

Lemma 4 We have that c(x) = 1
α̂

x2 and ζ ∗
i (x) = 1

αi α̂
x for i = 1, . . . , I and x ∈ R.

In the workload formulation, it is optimal to keep all workload in the buffer with the
lowest holding cost, i.e., buffer i∗ where

i∗ = arg min
i=1,...,I

hi , (77)

with holding cost h = hi∗ − h0 > 0. This follows because the holding cost function is
linear in the state, i.e., it is equal to

∑I
i=1(hi − h0) zi . Moreover, the system manager

will only idle the server that is cheapest to idle, i.e., server k∗ where

k∗ = arg min
i=1,...,I

ci

λ∗
i
, (78)

123

20 Queueing Systems (2024) 106:1–66

with idling cost r = ck∗/λ∗
k∗ .

The workload formulation can now be stated as follows: Choose a policy θ :
[0,∞) → R that is nonanticipating with respect to χ so as to

minimize lim sup
t→∞

1

t
E

[∫ t

0
[c (θ(s)) + h W (s)] ds + r L(t)

]
(79)

subject to

W (t) = χ(t) − η

∫ t

0
W (s) ds −

∫ t

0
θ(s) ds + L(t), t ≥ 0, (80)

W (t) ≥ 0 for t ≥ 0, (81)

L is nondecreasing with L(0) = 0, (82)

The RBCP (63) and (68) and the EWF (79) and (82) are equivalent as proved by the
following proposition, see Appendix B for its proof.

Proposition 2 Every admissible policy θ for the EWF (79)–(82) yields an admissible
policy (Z , U , ζ) for the RBCP (70)–(74) and these two policies have the same cost.
On the other hand, for every admissible policy (Z , U , ζ) of the RBCP, there exists an
admissible policy θ for the EWF whose cost is less than or equal to that of the policy
(Z , U , ζ) for the RBCP.

In what follows, we add two additional constraints to the equivalent workload formu-
lation. First, we require that

∫ ∞

0
1{W (t)>0} d L(t) = 0, (83)

which requires that the process L can increase only when W = 0. That is, the control
policy must be work conserving.

We include this restriction because its optimality is intuitive from the cost structure,
i.e., there are both holding and idleness costs, and that the workload process is one
dimensional. Second, we impose the following regularity condition:

lim
t→∞

E [W (t)]

t
= 0.

To repeat, we further require a policy θ to satisfy these conditions to be admissible.

6 Solving the equivalent workload formulation

This section solves the EWF (79) and (82). In order to minimize technical complexity,
we restrict attention to stationary Markov policies. That is, the drift chosen at time
t will be a function of the current workload only, and so we write it as θ (W (t)).
To facilitate the analysis, we next consider the Bellman equation for the workload
formulation

123

Queueing Systems (2024) 106:1–66 21

which is the following second-order nonlinear differential equation: Find a function
f ∈ C2[0,∞) and a constant β ∈ R satisfying

β = min
x∈R

{
1

2
σ 2 f ′′(w) − ηw f ′(w) − x f ′(w) + a f ′(w) + c(x) + hw

}

= min
x∈R

{
1

α̂
x2 − x f ′(w)

}
+ 1

2
σ 2 f ′′(w) − ηw f ′(w) + a f ′(w) + hw, w ≥ 0,

(84)

subject to the boundary conditions

f ′(0) = −r and f ′ is increasing with lim
w→∞ f ′(w) = h

η
. (85)

The optimization problem on the right hand side of Eq. (84) is convex. Therefore, its
solution is easily seen to be

x∗ = α̂

2
f ′(w). (86)

The Bellman equation can then be simplified as follows: Find a function f ∈ C2[0,∞)

and a constant β ∈ R satisfying

β = − α̂

4

[
f ′(y)

]2 + 1

2
σ 2 f ′′(y) − ηy f ′(y) + a f ′(y) + hy, y ≥ 0, (87)

subject to the boundary conditions

f ′(0) = −r and f ′ is increasing with lim
w→∞ f ′(w) = h

η
. (88)

Setting v = f ′, the Bellman equation can be written as follows: find a function
v ∈ C1[0,∞) and a constant β ∈ R satisfying

β = − α̂

4
v2(y) + 1

2
σ 2v′(y) − ηyv(y) + av(y) + hy, y ≥ 0, (89)

subject to the boundary conditions

v(0) = −r and v is increasing with lim
y→∞ v(y) = h

η
. (90)

This expresses the Bellman equation as a first-order differential equation. The follow-
ing theorem provides its solution. Its proof is given at the end of Sect. 7.

Theorem 1 The Bellman equations (89) and (90) has a solution (β∗, v) with β∗ > 0.

123

22 Queueing Systems (2024) 106:1–66

With β∗ > 0 and v given by Theorem 1, we define

f (y) =
∫ y

0
v(x) dx, y ≥ 0.

The next result is immediate from Theorem 1 and provides a solution to the original
Bellman equation:

Corollary 1 The pair (β∗, f) solves the Bellman equations (84) and (85).

Define the following candidate policy θ∗ : [0,∞) → R by

θ∗(w) = α̂

2
v(w), w ≥ 0. (91)

The following proposition facilitates the proof of our main result, Theorem 2; see
Appendix B for its proof.

Proposition 3 The candidate policy θ∗ is admissible for the equivalent workload for-
mulation. That is, letting W ∗ = {W ∗(t), t ≥ 0} denote the workload process under
the candidate policy θ∗, we have

lim
t→∞

E
[
W ∗(t)

]
t

= 0.

The following result establishes that the candidate policy is optimal:

Theorem 2 The candidate policy θ∗ is optimal for the equivalent workload formulation
(79)–(82), and its long-run average cost is β∗.

Next, we state an auxiliary lemma used in the proof of Theorem 2.

Lemma 5 Let W be the workload process defined by (80)–(82) under an arbitrary
admissible policy. Then the following hold:

(i) E
∫ t

0
f ′(W (s)) dχ(s) = 0, t ≥ 0,

(ii) lim sup
t→∞

E [f (W (t))]

t
= 0.

Proof By Proposition 4.7 in Harrison [54], to prove part (i) it suffices to show that

E
∫ t

0

[
f ′ (W (s))

]2
ds < ∞ for each t ≥ 0.

Because f ′(w) ∈ [−r , h/η] for all w ≥ 0 by Eq. (85) and because W (t) ≥ 0 for all
t ≥ 0 by Eq. (81), it follows that

E
∫ t

0

[
f ′ (W (s))

]2
ds ≤ t

(
r + h

η

)2
< ∞, for t ≥ 0,

123

Queueing Systems (2024) 106:1–66 23

proving part (i).
In order to prove part (ii), note that it suffices to show that

lim sup
t→∞

|E [f (W (t))]|
t

= 0.

We also note that

|E [f (W (t))]| ≤ E | f (W (t))| = E

∣∣∣∣∣
∫ W (t)

0
f ′(s) ds

∣∣∣∣∣
≤ E

∫ W (t)

0

∣∣ f ′(s)
∣∣ ds ≤

(
r + h

η

)
E [W (t)] .

Thus, by definition of an admissible policy, it follows that

lim sup
t→∞

|E [f (W (t))]|
t

≤
(

r + h

η

)
lim sup

t→∞
E [W (t)]

t
= 0,

proving part (ii). ��
We conclude this section with a proof of Theorem 2.

Proof of Theorem 2 By Eq. (80), note that for an admissible policy θ ,

dW (s) = dχ(s) − ηW (s) ds − θ(W (s)) ds + d L(s). (92)

Furthermore, since L(s) is nondecreasing in s, the processes is a VF function almost
surely; see Section B.2 in Harrison [54]. Therefore,

[dW (s)]2 = [dχ(s)]2 + 2 dχ(s) [−ηW (s) ds − θ(W (s)) ds + d L(s)]

+ [−ηW (s) ds − θ(W (s)) ds + d L(s)]2 (93)

= σ 2 ds.

Note that the last two terms on the right hand side of Eq. (93) are zero; see Chapter 4
in Harrison (2013). Then, for f ∈ C2[0,∞), Itô’s Lemma gives

d f (W (s)) = f ′(W (s))dW (s) + 1

2
f ′′(W (s)) [dW (s)]2 . (94)

Define the differential operator �θ : C2[0,∞) → C[0,∞) by

(�θ f) (w) = 1

2
σ 2 f ′′(w) − [ηw + θ(w) − a] f ′(w), w ≥ 0. (95)

Then, combining Eqs. (92) and (95) gives

d f (W (s)) = f ′(W (s)) dχ(s) + �θ f (W (s)) ds + f ′(W (s)) d L(s). (96)

123

24 Queueing Systems (2024) 106:1–66

Integrating both sides of Eq. (96) over [0, t] gives

f (W (t)) = f (W (0)) +
∫ t

0
f ′(W (s)) dχ(s) +

∫ t

0
�θ f (W (s)) ds

+
∫ t

0
f ′(W (s)) d L(s). (97)

Recall that by Eq. (83) the process L increases only when W = 0. Thus, for f ∈
C2[0,∞]) satisfying f ′(0) = −r we have

∫ t

0
f ′(W (s)) d L(s) = f ′(0)L(t) = − r L(t). (98)

By Lemma 5 and Eqs. (97) and (98), it follows that

f (W (t)) = f (W (0)) +
∫ t

0
�θ f (W (s)) ds − r L(t). (99)

In particular, for the solution (β∗, f) of the Bellman equation (84) and (85) it follows
that

β∗ − c (θ(w)) − hw ≤ 1

2
σ 2 f ′′(w) − [ηw + θ(w) − a] f ′(w), w ≥ 0, (100)

with equality holding when θ = θ∗. Therefore, by Eqs. (95) and (99) and (100) we
have

f (W (t)) − f (W (0)) + r L(t) =
∫ t

0
�θ f (W (s)) ds

≥
∫ t

0

[
β∗ − c (θ(W (s))) − hW (s)

]
ds, (101)

with equality holding when θ = θ∗. Rearranging terms in Eq. (101), taking expecta-
tions, and dividing by t gives

1

t
E

[∫ t

0
[c (θ(s)) + hW (s)] ds + r L(t)

]
≥ β∗ − 1

t
E f (W (t)) + 1

t
E f (W (0)),

(102)

with equality holding when θ = θ∗. Finally, taking limits on both sides of Eq. (102)
and applying Lemma 5 gives

lim sup
t→∞

1

t
E

[∫ t

0
[c (θ(s)) + hW (s)] ds + r L(t)

]
≥ β∗,

with equality holding when θ = θ∗. Therefore, the policy θ∗ is optimal for the equiv-
alent workload formulation and its long-run average cost is β∗. ��

123

Queueing Systems (2024) 106:1–66 25

7 Solution to the Bellman equation

In this section we prove Theorem 1 by considering an initial value problem that is
closely related to the Bellman equation. Namely, for each fixed β ≥ 0 consider the
following initial value problem, denoted by IVP(β): Find a function v ∈ C1[0,∞)

such that

σ 2

2
v′(y) = β + α̂

4
v2(y) + ηy

(
v(y) − h

η

)
− av(y), y ≥ 0, (103)

v(0) = − r . (104)

The following result is standard and its proof is provided in Appendix B.

Lemma 6 For β ≥ 0, there exists a unique solution vβ ∈ C1[0,∞) to (103) and (104).

For the remainder of this section, we analyze the (unique) solution to Eqs. (103) and
(104), focusing on how the behavior of the solution varies with the parameter β. Using
this approach, we ultimately find a β∗ > 0, with corresponding solution vβ∗ , such that
the pair (β∗, vβ∗) solves the original Bellman equation. Namely, we look for β∗ such
that vβ∗ satisfies the second boundary condition in Eq. (88) that vβ∗ is increasing with
limy→∞ vβ∗(y) = h/η.

For much of our analysis, we consider parameters that satisfy one of the two cases,
given in Assumption 5. To state the assumption, let

β
1

= 0, and β
2

= − ar − α̂r2

4
.

Assumption 5 One of the following holds:

(a) Case 1: a > − α̂
4 r and β ≥ β

1
;

(b) Case 2: a ≤ − α̂
4 r and β > β

2
.

Remark Note that under Assumption 5(b), we have that β
2

≥ 0.

Lemmas 7–9 facilitate the analysis to follow.

Lemma 7 If y > 0 is a local maximizer of vβ(y), then vβ(y) ≤ h/y.

Proof Because y is a local maximizer, we have that v′
β(y) = 0, and v′′

β(y) ≤ 0.
Differentiating both sides of Eq. (103) and using v′

β(y) = 0, we write

σ 2

2
v′′
β(y) = η

(
vβ(y) − h

η

)
≤ 0,

from which it follows that vβ(y) ≤ h/y. ��
Lemma 8 Under Assumption 5, vβ increases to its supremum.

123

26 Queueing Systems (2024) 106:1–66

Proof First, note that v′
β(0) = 2β

σ 2 + α̂
2σ 2 r2 + 2ar

σ 2 > 0 in either case of Assumption 5.
Aiming for a contradiction, suppose vβ does not increase to its maximum. Then we
must have 0 ≤ x1 < x2 < x3 such that

vβ(x1) = vβ(x2) = vβ(x3) = v,

v′
β(x1) > 0, v′

β(x2) < 0, v′
β(x3) > 0.

In particular, we have the following equations:

v′
β(x1) = 2β

σ 2 + α̂

2σ 2 v2 + 2η

σ 2 x1

(
v − h

η

)
− 2av

σ 2 > 0, (105)

v′
β(x2) = 2β

σ 2 + α̂

2σ 2 v2 + 2η

σ 2 x2

(
v − h

η

)
− 2av

σ 2 < 0, (106)

v′
β(x3) = 2β

σ 2 + α̂

2σ 2 v2 + 2η

σ 2 x3

(
v − h

η

)
− 2av

σ 2 > 0. (107)

On the one hand, subtracting (106) from (105) yields

2η

σ 2 (x1 − x2)

(
v − h

η

)
> 0. (108)

Because x1 − x2 < 0, we conclude from (108) that

v − h

η
< 0 (109)

On the other hand, subtracting (106) from (107) gives

2η

σ 2 (x3 − x2)

(
v − h

η

)
> 0. (110)

But, we deduce fromEq. (109) and from x3−x2 > 0 that the left hand side of Eq. (110)
is negative, which is a contradiction. This completes the proof. ��
Lemma 9 Let 0 ≤ x1 < x2. Under Assumption 5, the following condition is necessary
for vβ(x) to be constant on (x1, x2):

β = a
h

η
− α̂

4

(
h

η

)2
. (111)

Moreover, if vβ is constant on (x1, x2), then vβ(x) = h/η for x ∈ (x1, x2), and letting
x̂ = inf{x ≥ 0 : vβ(x) = h/η}, it follows that vβ is nondecreasing on [0, x̂] and stays
constant at value h/η thereafter.

On the other hand, if Eq. (111) does not hold, then there is no interval on which vβ

is constant, i.e., the set {y ≥ 0 : v′
β(y) = 0} has Lebesgue measure zero.

123

Queueing Systems (2024) 106:1–66 27

Proof Suppose the condition in Eq. (111) is violated, which implies

β + α̂

4

(
h

η

)2
− a

h

η

= 0 (112)

Aiming for a contraction, suppose there exist an interval (x1, x2) such that vβ(y) = v

on it. This implies v′
β(y) = v′′

β(y) = 0 on (x1, x2). Differentiating both sides of
Eq. (103) and using v′

β(y) = 0 on (x1, x2) gives

σ 2

2
v′′
β(y) = η

(
vβ(y) − h

η

)
, y ∈ (x1, x2).

Thus, vβ(y) = h/η on (x1, x2). Substituting this into Eq. (103) yields

σ 2

2
v′
β(y) = β + α̂

4

(
h

η

)2
− a

h

η

= 0, y ∈ (x1, x2),

which follows from (112) and contradicts that v′
β(y) = 0 on (x1, x2). Therefore, if

(111) does not hold, then there is no interval on which vβ is constant.
Now, we turn to the first part of the lemma. If vβ is constant on (x1, x2), then

v′
β(x) = v′′

β(x) = 0 on (x1, x2). As argued above, these imply vβ(x) = h/η on
(x1, x2). In addition, it follows from (103) and v′

β(x) = −h/η on (x1, x2) that

β + α̂

4

(
h

η

)2
− a

h

η
= 0,

proving the necessary condition (112). Building on these, because at any local maxi-
mum vβ(x) ≤ h/η by Lemma 7 and x̂ is the first time vβ reaches to its maximum by
Lemma 8, we conclude that vβ is nondecreasing on [0, x̂]. To conclude the proof, con-
sider an auxiliary IVP involving (103) on [x̂,∞)with the initial condition v(x̂) = h/η.
Then setting v(x) = h/η solves it. Moreover, combining that with vβ on [0, x̂) consti-
tutes a solution to the IVP (103) and (104). By Lemma 6, this is the unique solution.

��

To facilitate the analysis below, we define the following four sets. First, consider Case
1 identified in Assumption 5 (i.e., Assumption 5(a)) and let

I1 = {β ≥ 0 : vβ is nondecreasing on (0,∞)
}
,

D1 =
{
β ≥ 0 : ∃xβ ≥ 0 such that vβ is nondecreasing on (0, xβ)

and decreasing on (xβ,∞)

}
.

123

28 Queueing Systems (2024) 106:1–66

Similarly, in Case 2 of Assumption 5 (Assumption 5(b)), we define

I2 =
{
β > β

2
: vβ is nondecreasing on (0,∞)

}
,

D2 =
{
β > β

2
: ∃xβ ≥ 0 such that vβ is nondecreasing on (0, xβ)

and decreasing on (xβ,∞)

}
.

Lemma 10 We have the following:

(i) Under Assumption 5(a), β ∈ D1 if and only if ∃x0 ∈ (0,∞) such that v′
β(x0) < 0.

(ii) Under Assumption 5(b), β ∈ D2 if and only if ∃x0 ∈ (0,∞) such that v′
β(x0) < 0.

Proof First, note from Lemma 9 that it is necessary that vβ increases to h/η and stay
constant thereafter for it to be constant on any interval. In that case, we would have
β ∈ Ii (i = 1 under Assumption 5(a) and i = 2 under Assumption 5(b). Thus, for the
remainder of the proof, we assume there is no interval on which vβ is constant.

We prove Cases (i) and (ii) simultaneously because their proofs are identical. For
i = 1, 2, let β ∈ Di . Aiming for a contradiction, assume there does not exist x0 > 0
such that v′

β(x0) < 0. Then, v′
β(x) ≥ 0 for all x ≥ 0, i.e., vβ is nondecreasing

on (0,∞). Thus, β ∈ Ii , a contradiction. Therefore, there exists x0 > 0 such that
v′
β(x0) < 0.
For the other direction, suppose there exists x0 > 0 such that v′

β(x0) < 0. Because
vβ increases to its maximum (Lemma 8), it is not constant on any interval (by the
argument given in the opening paragraph of this proof) and v′

β(x0) < 0, it achieves its
maximum at some x∗ < x0. Thus, by Lemma 7, we have that

vβ(x) ≤ vβ(x∗) ≤ h

η
, x ≥ 0. (113)

Aiming for a contradiction, suppose that β /∈ Di . Then vβ cannot be decreasing over
[x∗,∞). Thus, there exist x1 and x2 such that

x∗ < x1 < x2,

v = vβ(x1) = vβ(x2) ≤ h

η
,

v′
β(x1) < 0 < v′

β(x2).

In particular, the following holds:

v′
β(x1) = 2β

σ 2 + α̂

2σ 2 v2 + 2η

σ 2 x1

(
v − h

η

)
− av < 0, (114)

v′
β(x2) = 2β

σ 2 + α̂

2σ 2 v2 + 2η

σ 2 x2

(
v − h

η

)
− av > 0. (115)

123

Queueing Systems (2024) 106:1–66 29

Subtracting (114) from (115) gives

0 < v′
β(x2) − v′

β(x1) = η (x2 − x1)

(
v − h

η

)
≤ 0,

where the last inequality follows because x2−x1 > 0 and v ≤ h
η
by Eq. (113), leading

to a contradiction. Thus, β ∈ Di . ��
Corollary 2 Under Assumption 5, we have the following:

(i) In Case 1 of Assumption 5 (Assumption 5(a)), the sets I1 and D1 partition [0,∞);
(ii) In Case 2 of Assumption 5 (Assumption 5(b)), the sets I2 andD2 partition (β

2
,∞).

Proof Consider Case (i). For β ≥ 0, if v′
β(x) < 0 for some x > 0, then β ∈ D1 by

Lemma 10. Otherwise, v′
β(x) ≥ 0 for all x > 0, in which case β ∈ I1 by definition.

Proof of (ii) follows similarly. ��
Corollary 3 Under Assumption 5, we have the following. In Case i of Assumption 5
for i = 1, 2, if β ∈ Di , then vβ achieves its maximum and

sup
x≥0

vβ(x) <
h

η
.

Proof For i = 1, 2, by definition of Di , ∃x∗ ≥ 0 such that vβ is nondecreasing
on (0, x∗) and it is decreasing on (x∗,∞). First, note that if x∗ = 0, then vβ(x)

is decreasing everywhere and vβ(0) = −r and the result follows. Thus, we assume
x∗ > 0. Note that vβ achieves its maximum at x∗. Also, we conclude from Lemma 7
that vβ(x∗) ≤ h/η. Aiming for a contradiction, suppose vβ(x∗) = h/η. Note that
v′
β(x∗) = 0 because x∗ is the maximizer. From these, by differentiating both sides
of Eq. (103), we conclude that v′′

β(x∗) = 0. Then we can argue as in the proof of
Lemma 9 that vβ(x) = h/η for x ≥ x∗, implying β /∈ Di , a contradiction. Thus,
vβ(x∗)
= h/η, completing the proof. ��
Lemma 11 Under Case i of Assumption 5 (i = 1, 2), we have that if β ∈ Di , then
lim

x→∞ vβ(x) = −∞.

Proof It follows from Corollary 3 that vβ has a maximizer x∗ such that

vβ(x) ≤ vβ(x∗) <
h

η
, x ≥ 0. (116)

Also define

ε = h

η
− vβ(x∗) > 0. (117)

123

30 Queueing Systems (2024) 106:1–66

To prove lim
x→∞ vβ(x) = −∞, we argue by contradiction. To that end, suppose there

exists a K1 > 0 such that vβ(x) ≥ −K1 for x ≥ 0. Then we have that

|vβ(x)| ≤ K2 = max

{
K1,

h

η

}
. (118)

Recalling IVP(β), we bound v′
β(·) using (116) and (118) as follows:

σ 2

2
v′
β(y) ≤ β + α̂

4
K 2
2 + ηy

(
vβ(x∗) − h

η

)
+ |a|K2 =

[
β + α̂

4
K 2
2 + |a|K2

]

− εηy, y ≥ 0. (119)

Integrating both sides of (119) over [0, y] and using the initial condition vβ(0) = −r
gives

σ 2

2
v′
β(y) ≤ −σ 2

2
r +

[
β + α̂

4
K 2
2 + |a|K2

]
y − ηε

2
y2, y ≥ 0. (120)

Since ηε/2 > 0, the right hand side of (120) tends to −∞ as y → ∞, implying that
v(y) → −∞ as y → ∞, a contradiction. ��
Lemma 12 Under Case i of Assumption 5 (i = 1, 2), the following are equivalent:

(i) β ∈ Di ,
(ii) ∃x > 0 such that v′

β(x) < 0,
(iii) ∃x > 0 such that vβ(x) < −r ,
(iv) lim

x→∞ vβ(x) = −∞.

Proof Parts (i) and (ii) are equivalent by Lemma 10. Part (i) implies (iv) by Lemma 11.
Clearly, (iv) implies (iii). Therefore, it suffices to prove that (iii) implies (ii). To that
end, let x0 > 0 be such that vβ(x0) < −r . Since vβ(0) = −r , it follows from the
mean value theorem that there exists a x̂0 ∈ (0, x0) such that

v′
β(x̂0) = vβ(x0) − vβ(0)

x0 − 0
< 0,

proving part (ii). ��
Lemma 13 Under Assumption 5, we have that limx→∞ vβ(x) = ∞ if and only if there
exists an x0 > 0 such that vβ(x0) ≥ h

η
.

Proof First, if limx→∞ vβ(x) = ∞, then clearly, there exists an x0 > 0 such that
vβ(x0) > h

η
. To prove the other direction, suppose there exists x0 > 0 such that

vβ(x0) > h
η
, and define

x1 = inf

{
x > 0 : vβ(x) ≥ h

η

}
,

123

Queueing Systems (2024) 106:1–66 31

Because vβ(0) = − r < h
η

< vβ(x0), by the intermediate value theorem, vβ(x1) = h
η
.

Next, we argue that vβ(x) > h
η
for all x > x1. If not, then there exists an x2 > x1

such that vβ(x2) ≤ h
η
. Then let

x3 = inf

{
x > x1 : vβ(x) ≤ h

η

}
.

Note that vβ(x3) = h
η
by continuity of vβ . Furthermore, note that x3 > x1 since

vβ(x1) = h
η
and

v′
β(x1) = 2β

σ 2 + α̂

2σ 2

(
h

η

)2
− a

h

η
> 0, (121)

where the last inequality holds because

(i) v′
β(x1) ≥ 0 by definition of x1,

(ii) x1 < x0, vβ(x0) > h
η
and vβ increases to its maximum,

(iii) we cannot have v′
β(x1) = 0 by Lemma 9 because vβ(x0) > h

η
.

Thus, (121) follows. Consequently, we have that

vβ(x) >
h

η
for x ∈ (x1, x3). (122)

By continuity, vβ(x) achieves a local maximum at some x̂ ∈ (x1, x3) and vβ(x̂) > h
η
,

but this contradicts Lemma 7. Therefore, we conclude that

vβ(x) >
h

η
for x ≥ x1. (123)

In particular, β /∈ Di . Rather, β ∈ Ii and vβ is nondecreasing by Corollary (2). So,
we have that

vβ(x) ≥ vβ(x0) >
h

η
for x > x0. (124)

To conclude the proof, we consider two cases: Case (i) a ≤ 0, Case (ii) a > 0. When
a ≤ 0, we note from (103) that

σ 2

2
v′
β(y) ≥ β + α̂

4

(
h

η

)2
for y ≥ x0. (125)

Integrating both sides of (125) over [x0, y] gives

vβ(y) ≥ h

η
+ 2

σ 2

[
β + α̂

4

(
h

η

)2]
(y − x1), y ≥ x0, (126)

123

32 Queueing Systems (2024) 106:1–66

where the right hand side tends to ∞, completing the proof when a ≤ 0.
When a > 0, we note from (103) that

v′
β(y) + 2a

σ 2 vβ(y) = 2β

σ 2 + α̂

2σ 2 v2β(y) + ηy

(
vβ(y) − h

η

)
, y ≥ x0. (127)

We let ε = vβ(x0) − h/η > 0 and write from (127) that

v′
β(y) + 2a

σ 2 vβ(y) = 2β

σ 2 + α̂

2σ 2

(
h

η

)
+ εηy. (128)

Multiplying both sides of this with the integrating factor exp
{
2a
σ 2 y
}
yields:

(
vβ(y) exp

{
2a

σ 2 y

})′
≥ C exp

{
2a

σ 2 y

}
+ εηy exp

{
2a

σ 2 y,

}

where C = 2β
σ 2 + α̂

σ 2 (h/η)2 > 0. Integrating both sides of this on [x0, y] yields

vβ(y) ≥ vβ(x0) + C

(
1 − exp

{
−2a

σ 2 (y − x0)

})
+ εη

σ 4

4a2

(
2a

σ 2 y − 1

)
,

where the right-hand side tends to ∞ as y → ∞, completing the proof when a > 0.
��
Lemma 14 For 0 ≤ β1 < β2, we have that vβ1(x) < vβ2(x) for all x > 0. That is,
vβ(x) is an increasing function of β for each x > 0.

Proof Let β2 > β1 ≥ 0. We argue by contradiction. Suppose vβ1(x) ≥ vβ2(x) for
some x > 0, and let

x̂ = inf
{

x > 0 : vβ1(x) ≥ vβ2(x)
}
.

Then there exists a sequence {xn} that decreases to x̂ , i.e., xn ↘ x̂ as n → ∞, such that
vβ1(xn) ≥ vβ2(xn) for all n. Recall that vβ1(0) = vβ2(0) = −r and v′

β2
(0) > v′

β1
(0).

Hence, vβ2 > vβ1 in a neighborhood around zero. This and continuity of vβ1 and vβ2

imply that

vβ1(x̂) = vβ2(x̂). (129)

Consequently, we can write

vβ1(xn) − vβ1(x̂)

xn − x̂
≥ vβ2(xn) − vβ2(x̂)

xn − x̂
, n ≥ 1.

123

Queueing Systems (2024) 106:1–66 33

Passing to the limit as n → ∞, we conclude that

v′
β1

(x̂) ≥ v′
β2

(x̂). (130)

Note, however, from IVP(β) that for β = β1, β2 we have

σ 2

2
v′
β1

(
x̂
) = β1 + α̂

4
v2β1(x̂) + ηx̂

(
vβ1(x̂) − h

η

)
− avβ1(x̂), (131)

σ 2

2
v′
β2

(
x̂
) = β2 + α̂

4
v2β2(x̂) + ηx̂

(
vβ2(x̂) − h

η

)
− avβ1(x̂). (132)

Subtracting (131) from (132) and using (129) yield

σ 2

2

[
v′
β2

(x̂) − v′
β1

(x̂)
]

= β2 − β1 > 0,

which contradicts (130). Thus, we conclude that vβ2(x) > vβ1(x) for x > 0. ��
Lemma 15 For x > 0, we have that vβ(x) is continuous in β on [0,∞). That is, for
x > 0, given β ≥ 0 and ε > 0, there exists a δ > 0 such that |vβ(x) − vβ̃(x)| < ε for

all β̃ ∈ (β − δ, β + δ) ∩ [0,∞).

Proof Let x > 0 and β2 > β1 ≥ 0. Integrating IVP(β) over [0, x] for β = β1, β2, we
arrive at the following two equations:

σ 2

2
vβ1(x) = −σ 2

2
r + β1x + α̂

4

∫ x

0
v2β1(y) dy + η

∫ x

0
y

(
vβ1(y) − h

η

)
dy

−
∫ x

0
avβ1(y)dy, (133)

σ 2

2
vβ2(x) = −σ 2

2
r + β2x + α̂

4

∫ x

0
v2β2(y) dy + η

∫ x

0
y

(
vβ2(y) − h

η

)
dy

−
∫ x

0
avβ2(y)dy. (134)

Subtracting (133) from (134) gives the following:

σ 2

2

[
vβ2(x) − vβ1(x)

] = (β2 − β1) x + α̂

4

∫ x

0

[
v2β2(y) − v2β1(y)

]
dy

+ η

∫ x

0
y
[
vβ2(x)−vβ1(x)

]
dy−a

∫ x

0

[
vβ1(y)−vβ2(y)

]
dy.

(135)

In order to facilitate the bound, let β̄ > β2 > β1 ≥ 0 and note from Lemma 14 that

v0(y) ≤ vβ1(y) ≤ vβ2(y) ≤ vβ̄(y), y ≥ 0.

123

34 Queueing Systems (2024) 106:1–66

Hence for y ≥ 0 we have that

2v0(y) ≤ vβ1(y) + vβ2(y) ≤ 2vβ̄(y),

from which we conclude that

|vβ1(y) + vβ2(y)| ≤ 2max
(
|v0(y)| + |vβ̄(y)|

)
.

Thus, letting

K
(
β̄
) = 2 sup

0≤y≤x

{
max

(
|v0(y)| + |vβ̄(y)|

)}
,

we arrive at the following for y ∈ [0, x]:

|v2β2(y)−v2β1(y)| = |vβ2(y)+vβ1(y)| · |vβ2(y)−vβ1(y)| ≤ K
(
β̄
) |vβ2(y)−vβ1(y)|.

Combining this with (135) and letting

h(y) = |vβ2(y) − vβ1(y)| for y ∈ [0, x],

yield the following inequality:

h(x) ≤ 2x

σ 2 |β2 − β1| +
[

α̂

2σ 2 K
(
β̄
)+ ηx + |a|

] ∫ x

0
h(y) dy.

Then by Gronwall’s inequality (e.g., see page 498 of Ethier and Kurtz [42]) we con-
clude that

h(x) ≤ 2x

σ 2 |β2 − β1| exp
{
−
(

ηx + α̂

2σ 2 K
(
β̄
)+ |a|

)
x

}
.

Thus, given ε > 0, we can let

δ = εσ 2

2x
exp

{
−
(

ηx + α̂

2σ 2 K
(
β̄
)+ |a|

)
x

}
,

so that |β2 − β1| < δ implies that h(x) = |vβ2(x) − vβ1(x)| < ε. This concludes the
proof. ��
Lemma 16 Under Assumption 5, we have the following:

(i) In Case 1 of Assumption 5 (Assumption 5(a)), for 0 ≤ β1 < β2, if β2 ∈ D1, then
β1 ∈ D1. That is, [0, β2] ⊆ D1 whenever β2 ∈ D1.

(ii) In Case 2 of Assumption 5 (Assumption 5(b)), for β
2

< β1 < β2, if β2 ∈ D2, then
β1 ∈ D2. That is, (β

2
, β2] ⊆ D2 whenever β2 ∈ D2.

123

Queueing Systems (2024) 106:1–66 35

Proof Consider part (i), and let β2 > β1 ≥ 0. Then by Lemma 12, there exists x0 > 0
such that vβ2(x0) < −r . In turn, by Lemma 14, we have that

vβ1(x0) < vβ2(x0) < −r ,

Thus, β1 ∈ D1 by Lemma 12. Proof of part (ii) follows similarly. ��
Lemma 17 Under Assumption 5, we have the following:

(i) In Case 1 of Assumption 5 (Assumption 5(a)), D1
= ∅. In particular, 0 ∈ D1 and
there exists a β̃1 > 0 such that [0, β̃] ⊆ D1.

(ii) In Case 2 of Assumption 5 (Assumption 5(b)), D2
= ∅. In particular, there exists
β̃2 > β

2
such that (β

2
, β̃2] ⊆ D2.

Proof Consider part (i). We first show 0 ∈ D1. Aiming for a contradiction, suppose
0 /∈ D1 so that 0 ∈ I1 by Corollary 2. We consider the following two cases:

• Case A: v0(y) ≤ 0 for all y > 0.
• Case B: v0(y) > 0 for some y > 0.

Consider Case A. Because 0 ∈ I1, v′
0(y) ≥ 0 for all y ≥ 0. Then, we have that

−r ≤ v0(y) ≤ 0 for all y ≥ 0. Substituting this into IVP(β) for β = 0, we consider
the following two subcases of Case A: a ≥ 0 and a ∈ (−αr

4 , 0).
For a ≥ 0, we conclude that

0 ≤ σ 2

2
v′
0(y) ≤ α̂

4
r2 − hy + ar ,

where the right-hand side tends to −∞. Thus, there exists y > 0 such that v′
0(y) < 0,

contradicting 0 ∈ I1.
For a ∈ (−αr

4 , 0), we conclude that

0 ≤ σ 2

2
v′
0(y) ≤ α̂

4
r2 − hy,

where the right-hand side tends to −∞. Once again, there exists y > 0 such that
v′
0(y) < 0, contradicting 0 ∈ I1.
Consider Case B. In this case, we let y0 = inf {y > 0 : v0(y) > 0}. By continuity

of v0 and v0(0) = −r < 0, we have that v0(y0) = 0 and y0 > 0. Substituting this into
IVP(β) for β = 0 at y = y0 gives

σ 2

2
v′
0(y0) = −hy0 < 0.

Thus, 0 ∈ D1 by Lemma 12, a contradiction. Combining Cases A and B, we conclude
that 0 ∈ D1. Then it follow from Lemma 12 that v0(y) → −∞ as y → ∞. Thus,
there exists a x0 > 0 such that v0(x0) < −2r . Then, by continuity of vβ(x0) in β (see
Lemma 15), there exists a β̃1 > 0 such that vβ̃(x0) < −r . By Lemma 12, we conclude

β̃1 ∈ D1. Then we conclude by Lemma 16 that [0, β̃1] ⊆ D1.

123

36 Queueing Systems (2024) 106:1–66

Consider part (ii). Recall that in Case 2 of Assumption 5, a ≤ −α̂r/4 and β
2

=
−ar − α̂r2/4 ≥ 0. Consider vβ2 and note that vβ2(0) = −r . It follows from (103)
that v′

β2
(0) = 0. Moreover, differentiating both sides of (103) and using v′

β2
(0) = 0,

we conclude that

v′′
β
2
(0) = −2η

σ 2

(
r + h

η

)
< 0.

Thus, vβ
2
is decreasing and below −r in a neighborhood of zero. Next, we argue that

vβ
2
(x) ≤ −r for all x > 0.
Suppose not, and let x1 = inf{x > 0 : vβ

2
(x) − r}. By continuity of vβ , we have

vβ
2
(x1) = −r . We also have by its definition that v′

β
2
(x1) ≥ 0 and x1 > 0. Then by

combining these with (103), we write

0 ≤ v′
β
2
(x1) = −ar − α̂

4
r2 + α̂

4
r2 − ηx1

(
r + h

η

)
+ ar

= −ηx1

(
r + h

η

)
< 0,

a contradiction. Thus, vβ
2
(x) ≤ −r for all x ≥ 0.

Next, we argue that limx→∞ vβ
2
(x) = −∞. Suppose not (Note that we can rule

out oscillatory behavior following the same technique in the proof of Lemma 8). Then,
there exists k > r such that

vβ
2
(x) ≥ −k, x ≥ 0.

But using (103), we conclude that

σ 2

2
v′
β
2
(x) ≤ β2 + α̂

4
K 2 − ηx

(
r + h

η

)
− ar .

Integrating both sides from 0 to y yields

σ 2

2
vβ

2
(y) ≤ −r

σ 2

2
+
[
β
2
− ar + α̂

4

]
y − η

2

(
r + h

η

)
y2

2
,

where the right-hand side tends to −∞ as y → ∞. Thus, vβ
2
(x) → −∞ as x → ∞

and there exists x2 such that vβ
2
(x2) < −2r . Then, by Lemma 14, there exists β̃2 > β

2

such that vβ̃2
(x2) < −r . In particular, β̃2 ∈ D2 by Lemma 12. Then, by Lemma 16,

we conclude that (β
2
, β̃2] ⊂ D2. ��

Lemma 18 Under Assumption 5, we have Ii
= ∅ for i = 1, 2. In particular,

(
σ 2h

2η
+ 2σ

(
r + h

η

)√
η

π
exp

{
−σ 2a2

4η

}
,∞
)

⊆ Ii , i = 1, 2.

123

Queueing Systems (2024) 106:1–66 37

Proof We establish the result by showing that vβ(x) → ∞ as x → ∞ for sufficiently
large β > 0. The result then follows from Corollary 2 and Lemmas 12 and 14. To that
end, we rewrite IVP(β) as follows:

v′
β(y) − 2η

σ 2 yvβ(y) + avβ(y) = 2β

σ 2 + α̂

2σ 2 v2β(y) − 2h

σ 2 y, y ≥ 0.

Multiplying both sides with the integrating factor exp
{
− η

σ 2 y2 + ay
}
yields the fol-

lowing bound:

[
exp
{
− η

σ 2 y2 + ay
}

vβ(y)
]′ ≥ 2β

σ 2 exp
{
− η

σ 2 y2 + ay
}

− 2h

σ 2 y exp
{
− η

σ 2 y2 + ay
}

.

Integrating both sides of the above inequality over [0, x] and using vβ(0) = −r gives:

exp
{
− η

σ 2 x2 + ax
}

vβ(x) ≥ −r + 2β

σ 2 I1 − 2h

σ 2 I2, (136)

where

I1 =
∫ x

0
exp
{
− η

σ 2 y2 + ay
}

dy and I2 =
∫ x

0
y exp

{
− η

σ 2 y2 + ay
}

dy.

First, we consider I1 and write

I1 = exp

{
σ 2

4η
a2
}∫ x

0
exp

{
− η

σ 2

(
y − aσ 2

2η

)2}
dy.

Applying the change of variable u =
√
2η
σ

(y − σ 2

2η) yields

I1 =
√

π

η
σ exp

{
σ 2

4η
a2
}∫ √

2η
σ

(x− σ2
2η)

− σ√
2η

1√
2π

exp

{
−u2

2

}
du

=
√

π

η
σ exp

{
σ 2

4η
a2
}[

�

(√
2η

σ

(
x − σ 2

2η

))
− �

(
− σ√

2η

)]
, (137)

where � is the CDF for the standard normal distribution. Next, we turn to I2 and
facilitate its derivative by first deriving

I3 =
∫ x

0

(
y − σ 2a

2η

)
exp
{
− η

σ 2 y2 + ay
}

dy.

Note that I3 = I2 − σ 2a
2η I1. Using the change of variable u = − η

σ 2 y2 + ay, we write

I3 =
∫ − η

σ2
x2+ax

0
−σ 2

2u
eudu = σ 2

2η

[
1 − exp

{
− η

σ 2 x2 + ax
}]

.

123

38 Queueing Systems (2024) 106:1–66

Then, using I2 = I3 + aσ 2

2η I1, we arrive at

I2 = σ 2

2η
− σ 2

2η
exp
{
− η

σ 2 x2 + ax
}

+ σ 2a2

2η
exp

{
a2σ 2

4η

}√
π

η
σ

[
�

(√
2η

σ
x − σ√

2η

)
− �

(
− σ√

2η

)]
. (138)

Substituting (137) and (138) into (136) then gives

exp
{
− η

σ 2 x2 + ax
}

vβ(x) ≥ −r − h

η
+ h

η
exp
{
− η

σ 2 x2 + ax
}

+ 2β

σ 2

√
π

η
exp

{
σ 2

4η
a2
}[

�

(√
2η

σ
x − σ√

2η

)
− �

(
− σ√

2η

)]

− σ
h

η
exp

{
a2σ 2

4η

}√
π

η

[
�

(√
2η

σ
x − σ√

2η

)
− �

(
− σ√

2η

)]
. (139)

Note that there exists x0 > 0 large enough so that

�

(√
2η

σ
x − σ√

2η

)
− �

(
− σ√

2η

)
≥ 1

4
. (140)

Then for x ≥ x0 and β > σ 2 h
2η , combining (139) and (140), we write,

exp
{
− η

σ 2 x2 + ax
}

vβ(x) ≥ −r +
(
2β

σ
− σh

η

)

exp

{
σ 2a2

4η

}√
π

η

1

η
− h

η
+ h

η
exp
{
− η

σ 2 x2 + ax
}

.

Thus, we have the following lower bound on vβ(·):

vβ(x) ≥
[
1

4

(
2β

σ
− σh

η

)
exp

{
σ 2a2

4η

}√
π

η
−
(

r + h

η

)]

exp
{ η

σ 2 x2 + ax
}

+ h

η
, x > x0. (141)

In particular, we note that for β > σ 2 h
2η +2σ

(
r + h

η

)√
η
π
exp{−σ 2a2

4η }, the right-hand
side of (141) tends to ∞ as x → ∞. Thus, β ∈ Ii for i = 1, 2 whenever it is above
σ 2 h
2η + 2σ(r + h

η
)

√
η
π
exp{−σ 2a2

4η }, completing the proof. ��

To facilitate the analysis, under Case i of Assumption 5, we define β∗
i = inf Ii for

i = 1, 2. The remaining results will prove that this β∗
i along with its corresponding

vβ∗
i
, solve the Bellman equation in Case i for i = 1, 2.

123

Queueing Systems (2024) 106:1–66 39

Lemma 19 Under Case i of Assumption 5, we have that β∗
i > 0 for i = 1, 2.

Proof Recall from Lemma 17 that there exists a β̃i > 0 such that β̃i ∈ Di for i = 1, 2.
Clearly, we must have β ≥ β̃i for β ∈ Ii and i = 1, 2. Thus, we conclude that
β∗

i = inf Ii ≥ β̃i > 0 for i = 1, 2. ��
Lemma 20 Under Case i of Assumption 5, We have that β∗

i ∈ Ii and vβ∗
i

is bounded
for i = 1, 2.

Proof Consider Case i of Assumption 5 for i = 1, 2. We argue by contradiction.
Suppose β∗

i /∈ Ii . Then, by Corollary 2, β∗
i ∈ Di . In particular, by Lemma 12, there

exists a x0 > 0 such that vβ∗
i
(x) < −r . Because vβ(x0) is continuous in β (see

Lemma 15), there exists a δ > 0 such that

vβ(x0) < −r for β ∈ (β∗
i − δ, β∗

i + δ
)
. (142)

However, by definition of β∗
i , there exists a β̂i ∈ (β∗

i , β∗
i + δ

)
such that β̂i ∈ Ii .

Applying Lemma 12 again, it follows that v
β̂i

(x) ≥ −r for all x ≥ 0, contradicting
(142). Thus, β∗

i ∈ Ii .
We now prove that vβ∗

i
is bounded. Aiming for a contradiction, suppose it is not

bounded. Then there exists a x0 > 0 such that vβ∗
i
(x0) > 2 h/η. Then, because vβ(x0)

is continuous in β (by Lemma 15) and β∗
i > 0 (by Lemma 19), there exists an ε > 0

such that vβ∗
i −ε(x0) ≥ h/η. It follows that vβ∗

i −ε is unbounded by Lemma 13, which
in turn implies that β∗

i − ε ∈ Ii by Corollary 2 and Lemma 11. That β∗
i − ε ∈ Ii ,

however, contradicts the definition of β∗
i . ��

Lemma 21 Under Assumption 5, the following hold:

(i) D1 = [0, β∗
1) and I1 = [β∗

1 ,∞),
(ii) D2 = (β

2
, β∗

2) and I2 = [β∗
2 ,∞).

Proof Consider Case i of Assumption 5. Suppose that there exists a β > β∗
i such that

β ∈ Di . Then by Lemma 16 it follows that β∗
i ∈ Di , contradicting Lemma 20. Hence,

no such β exists. Combining this with Lemma 20 and the definition of β∗
i concludes

the proof. ��
Lemma 22 Under Case i of Assumption 5, we have that vβ∗

i
is nondecreasing with

lim
x→∞ vβ∗

i
(x) = h/η for i = 1, 2.

Proof Consider Case i of Assumption 5 for i = 1, 2. Because β∗
i ∈ Ii by Lemma 20,

vβ∗
i
is nondecreasing. Also, by Lemma 20 we have that vβ∗

i
is bounded. Consequently,

by Lemma 13, we have that

vβ∗
i
(x) ≤ h

η
for x ≥ 0.

Moreover, because vβ∗
i
is nondecreasing, its limit is well-defined and satisfies

lim
x→∞ vβ∗

i
(x) ≤ h

η
.

123

40 Queueing Systems (2024) 106:1–66

Now let v = lim
x→∞ vβ∗

i
(x) and suppose that v < h

η
. Consider IVP(β∗

i):

σ 2

2
v′
β∗

i
(y) = β∗

i + α̂

4
v2β∗(y) + ηy

(
vβ∗

i
(y) − h

η

)
− avβ∗

i
(y), y ≥ 0.

Passing to the limit on both sides and noting that v < h
η
gives the following:

σ 2

2
lim

y→∞ v′
β∗

i
(y) = β∗

i + α̂

4
v2 − av + lim

y→∞ ηy

(
vβ∗

i
(y) − h

η

)
= −∞.

Thus, there exists a x0 > 0 such that v′
β∗

i
(x0) < 0. We conclude by Lemma 12 that

β∗
i ∈ Di , a contradiction. Therefore,

v = lim
x→∞ vβ∗

i
(x) = h/η.

��

We conclude this section with a proof of Theorem 1:

Proof of Theorem 1 First, consider the case a > − α̂
4 r that is covered by Case 1 of

Assumption 5 (Assumption 5(a)). In this case, (β∗
1 , vβ∗

1
) solves Eqs. (103) and (104)

and this solution in unique by Lemma 6. Moreover, by Lemma 22, we have that

lim
x→∞ vβ∗

1
(x) = h/η. Finally, byLemma19,we have thatβ∗

1 > 0. Therefore,
(
β∗
1 , vβ∗

1

)
solves the Bellman equations (89) and (90) in this case. When a ≤ − α̂

4 r , Case 2 of
Assumption 5 applies, and the proof follows from the same steps as in the first case. ��

8 Proposed policy

In this section we propose a dynamic pricing and dispatch policy for the problem intro-
duced in Sect. 3 by interpreting the solution of the equivalent workload formulation
(79) and (83) in the context of the original control problem. Recall that we considered
a sequence of systems indexed by the number of jobs n, whose formal limit was the
Brownian control problem (48) and (52) under diffusion scaling. To describe the pro-
posed policy, we fix the system parameter n and use it to unscale processes of interest.
We define the (unscaled) workload process W n = {W n(t), t ≥ 0} as follows:

W n(t) =
I∑

i=1

Qn
i (t) for t ≥ 0.

123

Queueing Systems (2024) 106:1–66 41

8.1 Proposed pricing policy

Given the workload process W n , we choose the demand rates

λn
i (t) = nλ∗

i +
√

n

2αi
v

(
W n(t)√

n

)
, i = 1, . . . , I , t ≥ 0,

where v is the solution to the Bellman equation (89) and (90). This follows from
Eqs. (43) and (91), Lemma 4, and Theorem 2. The corresponding proposed pricing
policy is given by

pn
i (t) = �−1

i

(
λ∗

i

)+
(
�−1

i

)′ (
λ∗

i

)
2αi

√
n

v

(
W n(t)√

n

)
, i = 1, . . . , I , t ≥ 0, (143)

where �−1
i is the inverse of the demand rate function for region i . Equation (143) is

derived in Appendix A.

8.2 Proposed dispatch policy

We propose two dispatch policies and refer to them as Dispatch Policy 1 (DP1) and
Dispatch Policy 2 (DP2). Dispatch Policy 1 (DP1) assumes each server prioritizes
its own buffer and serves the other buffers through basic activities only if (i) its own
buffer is empty and (ii) the other buffers that connected through basic activities have
queue lengths larger than the safety stock levels. This is motivated by the following
observation. In the Brownian control problem under the complete resource pooling
assumption, we set all but one of the inventory levels to zero. The buffer with nonzero
inventory corresponds to the one with lowest holding cost. This is due to the linear
holding cost structure. However, in the pre-limit system this may cause unintended
server idleness (for the servers that do not serve the cheapest buffer), because of the
stochastic variability in the system. To hedge against this, we can put small safety
stocks in such buffers. In other words, the safety stocks are used to avoid unintended
server idleness.

To elaborate further on the usefulness of such safety stocks, it is worth mentioning
Lu and Kumar [72] and Rybko and Stolyar [81]. Those authors observed that certain
two-station queueing networks may become unstable even though the traffic intensity
of each station is less than one. In these examples, servers mutually block one another
and cause excessive starvation; see Section 3.1 of Bramson [30] for a review of those
examples as well as Sections 3.2–3.3 of Bramson [30] for several other related exam-
ples. One simple way to avoid the mutual blocking phenomenon observed in Lu and
Kumar [72] and Rybko and Stolyar [81] is to have safety stocks for certain buffers and
to modify their priority rule slightly when the queue length is below the safety stock
for those buffers.

Similarly, in the heavy traffic literature, researchers have used safety stocks to
avoid undesired server idleness. For example, Harrison and Wein [55] uses one such
policy that uses a safety stock to avoid a starvation of the downstream station. In

123

42 Queueing Systems (2024) 106:1–66

another example, Harrison [51] considers an N -network which has two buffers and
two servers. In addition to serving its own buffer, server 2 can help server 1 by serving
buffer 1. In a simulation study, Harrison [51] shows that under the (nonpreemptive)
cμ rule, the system becomes unstable. This is because server 2 helps the other server
“too much” and that leads to the following: (i) starvation of server 1 and (ii) server
2 has too little remaining capacity (after helping server 1) to serve its own buffer.
Ultimately, the number of jobs in buffer 2 blows up; see Section 1 of Harrison [51]
for further details. One can address this situation by using a safety stock for buffer
1, whereby server 2 prioritizes buffer 1 only when there are more than s jobs in
buffer 1, where s is the safety stock parameter. Harrison [51] goes on to propose
a more elaborate discrete-review policy that involves safety stocks. To be specific,
Harrison [51] specializes the approach proposed by Harrison [50] as part of a program
of developing asymptotically optimal policies. Harrison [50] also mentions that zero
inventory in the Brownian control problem corresponds to small inventory levels in the
pre-limit system to further motivate the use of small safety stocks. Ata and Kumar [10]
proves the asymptotic optimality of a policy, which uses small safety stocks, in the
heavy traffic limit. Thus, we put small safety stocks in the various buffers and only
serve them when inventory levels are at or above the threshold. To that end, denote by
si the safety stock for buffer i .

To be more specific, letting Āi = Ai ∩ {1, . . . , b} denote the set of basic activities
undertaken by server i and letting C̄i = Ci ∩{1, . . . , b} denote the set of basic activities
that serve buffer i , our proposed dispatch policy is as follows: If server i becomes idle

at time t , it serves a job from the buffer in
{

b(j) : j ∈ Āi , Qn
b(j)(t) ≥ sb(j)

}
with

largest holding cost hb(j). In words, when server i becomes idle, it looks at all buffers
it servers by means of basic activities and serves the buffer with largest holding cost
that is above its safety stock. To complete the policy description, suppose that at time
t the inventory in buffer i increases from si − 1 to si , i.e., reaches the safety stock.
The system manager serves buffer i by an idle server in

{
s(j) : j ∈ C̄i

}
with largest

effective idling cost cs(j)/λ
∗
s(j), see Eq. (78). In words, when buffer i reaches the safety

stock, i.e., that buffer becomes eligible for service, the system manager selects an idle
server with largest effective idling cost than can serve the buffer by means of a basic
activity.

Dispatch Policy 2 (DP2) is motivated by the maximum pressure policy, see for
example Stolyar [84], Dai and Lin [40], Dai and Lin [41], and Ata and Lin [13]. Under
this policy, each server prioritizes his own (local) buffer. If his own buffer is empty,
then he checks the other buffers that he can serve using basic activities. If there are
multiple such buffers, the server works on the buffer with the largest queue length. If
the server’s own (local) buffer is empty and he cannot serve any other buffers using
basic activities, then he considers all remaining buffers he can serve (using nonbasic
activities) and works next on the buffer with the largest queue length.

123

Queueing Systems (2024) 106:1–66 43

Fig. 2 Manhattan area that are
partitioned in four regions,
where a double-headed arrow in
between two neighbouring
regions shows the possible
directions that taxis can move
between regions to pick up
customers

9 Simulation study

This section presents a simulation study to illustrate the effectiveness of the proposed
policy. The simulation setting and its parameters are motivated, albeit loosely, by the
taxi market in Manhattan, see Ata et al. [8] and the references therein. We set the
number of cars, i.e., the system parameter, as n = 10, 000. As done in Ata et al. [8],
we divide Manhattan into I = 4 regions, see Fig. 2.

We assume cars can pick up customers in their own regions as well as from the
neighboring regions. This gives rise to the following capacity consumption matrix:

A =

⎡
⎢⎢⎣
1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 1 1 0
0 0 0 1 0 0 0 0 0 1

⎤
⎥⎥⎦ .

Using the same dataset in Ata et al. [8], we set6 the demand rate (per hour) vector as
follows:

λn = (λn
1, λ

n
2, λ

n
3, λ

n
4)

′ = (3678, 10723, 6792, 345)′.

6 For simplicity, we use the preliminary results fromAta et al. [8] to estimate λn and q (based on a four-year
dataset from January 2010 to December 2013). In doing so, we focus on the day shift of the non-holiday
weekdays.

123

44 Queueing Systems (2024) 106:1–66

The corresponding limiting rate vector λ∗ is then computed as λ∗ = λn/n, which
yields

λ∗ = (λ∗
1, λ

∗
2, λ

∗
3, λ

∗
4)

′ = (0.367, 1.072, 0.679, 0.0345)′. (144)

Using this, we arrive at the following constituency matrix:

C =

⎡
⎢⎢⎣
1 0 0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 0 1 0

⎤
⎥⎥⎦ .

By Eq. (25), we derive the input–output matrix R as follows:

R =

⎡
⎢⎢⎣

λ∗
1 0 0 0 0 λ∗

2 0 0 0 0
0 λ∗

2 0 0 λ∗
1 0 0 λ∗

3 0 0
0 0 λ∗

3 0 0 0 λ∗
2 0 0 λ∗

4
0 0 0 λ∗

4 0 0 0 0 λ∗
3 0

⎤
⎥⎥⎦ .

Ata et al. [8] reports the mean travel time as 13.2min. To account for the pick up
time and for other inefficiences that are not incorporated in our model, we inflate
this by a factor of two, and set the mean trip time to 26.4min. Thus ηn = 2.2727
per hour. Moreover, because we study the system under the heavy traffic assumption
(Assumption3),we setη = e′λ∗ = 2.1539.Therefore,wehave that η̂ = √

n(ηn−η) =
11.88.

We estimate the routing probability vector q from the data as

q = (q1, q2, q3, q4)
′ = (0.1647, 0.5408, 0.2724, 0.0221)′,

which yields the limiting arrival rate vector ν to various buffers as follows:

ν = ηq = (0.3529, 0.1159, 0.5837, 0.0474)′.

Thus using the data A, R, and γ , one can compute the unique nominal processing plan
x∗, referred to in Assumption 3. It is displayed in Fig. 3.

Having characterized x∗, we next compute the drift parameter a and the variance
parameter σ 2 of the Brownian motion χ(·), see Eq. (72). To this end, first note that the
drift vector γ and the covariance matrix� of the Brownianmotion B(·) (see Eqs. (49),
(55), and (56)) are given as follows:

γ = η̂′q = (1.9566, 6.4247, 3.2361, 0.2625)′, and

� =

⎡
⎢⎢⎣
0.7097 0.1918 0.0966 0.0078
0.1918 2.3302 0.3173 0.0257
0.0966 0.3173 1.1742 0.0130
0.0078 0.0257 0.0130 0.0937

⎤
⎥⎥⎦ .

123

Queueing Systems (2024) 106:1–66 45

Fig. 3 Unique solution x∗ ∈ R
10 to the static problem from Eqs. (28) and (30). We see that Activities 6,7,

and 10 are nonbasic while the rest are basic

Thus, we have that a = e′γ = 11.88 and σ 2 = e′�e = 5.6125.
Next, we describe the economic primitives of our example: the demand function,

and its associated profit function, the holding cost rates and the cost of idleness. We
assume that the demand function is linear. That is,

�i (pi) = ai − bi pi for pi ∈ [0, ai

bi
] and i = 1, . . . , 4,

where ai , bi > 0 are constants. Also, its inverse is given by

�−1
i (λi) = ai − λi

bi
, λi ∈ [0, ai], i = 1, . . . , 4.

The profit function then follows from Eq. (7) as follows:

π(λ) =
4∑

i=1

λi

bi
(ai − λi) , λi ∈ [0, ai], i = 1, . . . , 4.

We set the optimal static price as p∗
i = 10 for all region i , which is about the average

price of a ride in the data, see Ata et al. [8]. Also, recall that the limiting demand
rate vector λ∗ = (λ∗

1, . . . , λ
∗
4) is given by (144). We crucially assume that these are

the optimal demand rate and the prices. This is equivalent to assuming ai = 2λ∗
i and

b∗ = λ∗
i /pi for i = 1, . . . , 4. Namely, we set

a = 2λ∗ = (0.7356, 2.1446, 1.3584, 0.0691)′,
b = λ∗/p∗ = (0.0367, 0.1072, 0.0679, 0.0035)′.

123

46 Queueing Systems (2024) 106:1–66

Given thesewecompute theparameterαi asαi = −(�−1
i)′(λ∗

i)−(λ∗
i /2)(�

−1
i)′′(λ∗

i) =
1/bi for i = 1, . . . , 4. Thus, we obtain α = (27.18, 9.32, 14.72, 289.55) and
α̂ =∑4

i=1 1/αi = 0.2154.
Ata et al. [8] suggest that the holding cost when taxis are traveling is hn

0 = 1 dollars
per hour (which can be derived from their fuel cost estimates). To estimate the holding
cost rates for other buffers, we consider the driver’s opportunity cost. A driver can
complete about two trips per hour, resulting in approximately 2× 10 = 20 dollars per
hour. Thus,we sethn

i = 20 for i = 1, . . . , 4.Thus,wehavehn = mini=1,...,4 hn
i −hn

0 =
19.Upon scaling, we derive the limiting holding cost rate h for the equivalent workload
formulation as h = √

nhn = 1900. The idleness costs parameters are set to equal
the lost revenue. That is, cn

i = p∗
i = 10 for i = 1, . . . , 4. Upon rescaling, the

limiting idleness cost is ci = cn
i /

√
n = 0.1. Thus, the cheapest server to idle as

k∗ = argmini=1,...,4 ci/λ
∗
i = 2 with the idling cost r = ck∗/λ∗

k∗ = 0.0933.
Having computed the parameters a, σ 2, h, r , η, and α̂, we solve the Bellman equa-

tion numerically for the example. Using this solution, we next describe our proposed
policy.

9.1 Pricing policy

It follows from Eq. (143) that

pn
i (t) = 10 − 1

200
v

(
W n(t)

100

)
, i = 1, . . . , 4, t ≥ 0.

This corresponds to the following demand rates:

λn
i = 10000λ∗

i + 50

αi
v

(
W n(t)

100

)
, i = 1, . . . , 4, t ≥ 0,

where λn
i has units of customers per hour.

9.2 Dispatch policy

As discussed in Sect. 8, we propose two dispatch policies. Under the first proposed
policy (Dispatch Policy 1), servers 2 and 4 work only on their own buffer throughout.
Servers 1 and 3 prioritize their own buffers, but server 1 serves buffer 2 if buffer 1 is
empty and buffer 2 exceeds threshold s. Similarly, server 3 serves buffers 2 or 4 only
if buffer 3 is empty and buffer 2 or 4 exceeds threshold s. If both queues exceeds s,
then server 3 serves the longest one. We determine the threshold s by a brute-force
search. In particular, we set s = 1.

Under Dispatch Policy 2, each server prioritizes his own (local) buffer. If his own
buffer is empty, then he checks the other buffers that he can serve using basic activities.
If there are multiple such buffers, the server works on the buffer with the largest queue
length. If the server’s own (local) buffer is empty and he cannot serve any other

123

Queueing Systems (2024) 106:1–66 47

buffers using basic activities, then he considers all remaining buffers he can serve
(using nonbasic activities) and works next on the buffer with the largest queue length.

In order to compare the performance of our policy, we calculate the total revenue
by adding up the prices charged to each served customer. This also incorporates the
cost of idleness. Also, we keep track of the holding costs incurred. Lastly, we use

Ṽ n(t) = (nπ(λ∗) − √
nh0
)

t =
(

n
4∑

i=1

λ∗
i

bi
(ai − λ∗

i) − √
nh0

)
t, for t ≥ 0

(see Eq. (45)) to compute the normalized cost V̂ n(t), see Eq. (46).
We compare our policy against the following benchmark policies that combine

alternative pricing and dispatch policies. For pricing, in addition to our dynamic pricing
policy, we also consider the static pricing policy which sets pn

i (t) = p∗
i = 10 for all

i = 1, . . . , 4 and t ≥ 0. For dispatch, in addition to our two proposed policies, we
consider (i) a static dispatch policy, and (ii) the closest driver policy as described next.

9.3 Static dispatch policy

Servers 2 and 4 always serve their own buffers. If both buffers 1 and 2 are nonempty,
then server 1 works on buffer 1 with probability x∗

1/(x∗
1 + x∗

5) = 0.965 and it works
on buffer 2 with probability x∗

5/(x∗
1 + x∗

5) = 0.035. If only one of the buffers 1 and 2
is nonempty, then server 1 works on that buffer. Server 3 splits its effort among buffers
2, 3, and 4 similarly, i.e., proportional to x∗

3 , x∗
8 , and x∗

9 , respectively.

9.4 Closest driver policy

We let D be the distancematrix, i.e., Di j corresponds to the distance (inmiles) between
regions i and j when i
= j and Dii = 0. Using the data from Ata et al. [8], we have

D =

⎡
⎢⎢⎣

0 2.6414 4.8132 8.2689
2.6414 0 1.9993 6.1969
4.8132 1.9993 0 3.9073
8.2689 6.1969 3.9073 0

⎤
⎥⎥⎦ .

Server i engages in activity argmin j∈Ai Dib(j)(t) at time t . In other words, under the
closest driver policy each server prioritizes the buffer that is closest to him.

The result of the numerical study are given in Table 1. The simulated results
are obtained based on a run-length of 1000h and the estimated average cost is
computed by excluding the statistics from the first 200h warm-up period. The cor-
responding confidence intervals are calculated based on 10 macro-replications. We
observe that the proposed dispatch policies (DP1, DP2) offer significant improvement
(9.74%−55.01%) over the benchmark policies. More importantly, we observe that
dynamic pricing can lead to significant improvement (30.96%−61.73%) for every

123

48 Queueing Systems (2024) 106:1–66

Table 1 Estimated average cost along with the 95% confidence interval based on 10 macro-replications

Dispatch policy Static pricing policy Dynamic pricing policy

DP1 10075.23 ± 201.59 4302.59 ± 94.09

DP2 10607.19 ± 103.18 4059.35 ± 73.73

Static policy 13066.83 ± 457.31 9021.89 ± 204.19

Closest driver policy 12100.53 ± 193.57 4766.96 ± 122.19

(a) Static pricing (b) Dynamic pricing

Fig. 4 Average cost with respect to varying holding cost. The shaded area along each line shows the 95%
confidence interval based on 10 macro-replications

dispatch policy considered. Among the policies considered, the dynamic pricing with
Dispatch Policy 2 (DP2) has the best performance.

Unfortunately, we do not have data to directly estimate the holding costs and the
cost of idleness. For the former, the actual holding cost may be lower because the
opportunity cost we estimate is likely an upper bound. On the other hand, the latter
does not account for the loss of goodwill currently. Therefore, we conduct a sensitivity
analysis that considers lower holding cost rates (Fig. 4) and another one that considers
higher cost of idleness that incorporate the loss of goodwill7 (Fig. 5). These collectively
show that the insights from Table 1 are robust to changes in holding and idleness cost
parameters.

10 Concluding remarks

We study a dynamic pricing and dispatch control problem motivated by ride-hailing
systems. The novelty of our formulation is that it incorporates travel times. We solve
this problem analytically in the heavy traffic regime under the complete resource pool-
ing condition. Using this solution, we propose a closed form dynamic pricing policy
as well as a dispatch policy. We compare the proposed policy against benchmarks in
a simulation study and show that it is effective.

7 The estimated performance and the corresponding confidence interval for the sensitivity analysis is also
based on 10 macro-replications where each replication has a run-length of 1000h (and the statistics of the
first 200h are discarded as a warm-up period).

123

Queueing Systems (2024) 106:1–66 49

(a) Static pricing (b) Dynamic pricing

Fig. 5 Average cost with respect to varying idleness cost. The shaded area along each line shows the 95%
confidence interval based on 10 macro-replications

Our formulation has some limitations too. Namely, we assume there is only one
travel node and that the complete resource pooling condition holds. Interesting future
research directions include relaxing these assumptions. To be more specific, important
future research directions include (i) multiple travel-time distributions, and (ii) origin–
destination pricing. Having multiple travel-time distributions can help one represent
travel times between different nodes more accurately. It also allows for a much richer
routing probability structure. Furthermore, it enables origin–destination pricing. How-
ever, we expect that this generalization will give rise to a multidimensional drift and
singular control problem in the heavy traffic limit, which are far more challenging to
solve.

Our model is stationary and makes the heavy traffic assumption. Relaxing these
assumptions constitutes another future research direction.

Appendices

A Derivations

A.1 Formal derivation of the Brownian control problem

This section provides a formal derivation of the approximating Brownian control
problem introduced in Sect. 4. We do not provide a rigorous weak convergence limit
theorem. However, the arguments given in support of the approximation can be viewed
as a broad outline for such a proof; see Harrison [49, 52, 53] for similar derivations.

We consider a sequence of systems indexed by the system parameter n under the
heavy traffic assumption. Then we center the various processes by their mean, scale
them appropriately by the system parameter n, and finally pass to the limit as n → ∞
formally. To that end, we first define the following (diffusion) scaled processes:

�̂n
i (t) = 1√

n
(�i (�nt�) − qi nt) , t ≥ 0, i = 1, . . . , I , (145)

123

50 Queueing Systems (2024) 106:1–66

N̂ n
j (t) = 1√

n

(
N j (nt) − nt

)
, t ≥ 0, j = 0, 1, . . . , J , (146)

where �x� is the greatest integer less than or equal to x . We also define the following
(fluid) scaled processes:

N̄ n
0 (t) = 1

n
N0(nt), t ≥ 0, (147)

Q̄n
0(t) = 1

n
Qn

0(t), t ≥ 0, (148)

μ̄n
j (t) = 1

n
μn

j (t), j = 1, . . . , J , t ≥ 0. (149)

By Donsker’s theorem, the functional central limit theorem for renewal processes, and
independence of the stochastic primitives, the processes �̂n

i and N̂ n
j converge weakly

to independent standard Brownian motions, see Billingsley [28].
As observed in Kogan and Lipster [66], under the heavy traffic assumption, we

expect that the number of jobs in the infinite-server node will be n to a first-order
approximation. That is, we expect that Q̄n

0(t) ≈ 1 for t ≥ 0 as n gets large. Similarly,
we expect the queue lengths at buffers 1, . . . , I to be of order

√
n. As such, we expect

the prices, or equivalently, the demand rates, to deviate from their nominal values only
in the second order. That is, we expect λn

i − λ∗
i n = O

(√
n
)
. Because the demand

rates determine the service rates (see Eq. (9)), we expect that μ̄n
j (t) ≈ μ∗

j for t ≥ 0 as
n gets large.

By combining Eqs. (145) and (149) with Eqs. (38) and (44), it is straightforward
to derive the following scaled system dynamics equations for i = 1, . . . , I :

Zn
i (t) = Bn

i (t) + qiη
n
∫ t

0
Zn
0 (s) ds −

∑
j∈Ci

∫ t

0
κn

j (s) dT n
j (s)

+
∑
j∈Ci

μ∗
j Y

n
j (t) + t

√
n

⎡
⎣qiη −

∑
j∈Ci

μ∗
j x∗

j

⎤
⎦

= Bn
i (t) + qiη

n
∫ t

0
Zn
0 (s) ds −

∑
j∈Ci

∫ t

0
κn

j (s) dT n
j (s) +

∑
j∈Ci

μ∗
j Y

n
j (t),

where the second equality holds by Assumption 3 and where the process Bn
i is given

by

Bn
i (t) = Zn

i (0) + qi η̂t + qi N̂ n
0

(
ηn
∫ t

0
Q̄n

0(s) ds

)
+ �̂n

i

(
N̄ n
0

(
ηn
∫ t

0
Q̄n

0(s) ds

))

−
∑
j∈Ci

N̂ n
j

(∫ t

0
μ̄n

j (s) dT n
j (s)

)
.

123

Queueing Systems (2024) 106:1–66 51

Assuming that Zn
i (0) ≈ Zi (0) for large n, it is also straightforward to argue that Bn

i
can be approximated by a Brownian motion Bi with starting state Zi (0) that has drift
parameter γi = η̂qi and variance parameter

σ 2
i =

[
q2

i + qi (1 − qi)
]
η +

∑
j∈Ci

μ∗
j x∗

j = qiη +
∑
j∈Ci

μ∗
j x∗

j .

Furthermore, the covariance between the limiting Brownian motion processes is given
by

Cov (Bi , Bi ′) = qi qi ′η for i
= i ′.

Therefore, replacing Zn , Y n , and κn , by their formal limits Z , Y , and κ , we arrive
at the following system dynamics equations in the approximating Brownian control
problem for i = 1, . . . , I :

Zi (t) = Bi (t) + qiη

∫ t

0
Z0(s) ds −

∑
j∈Ci

∫ t

0
x∗

j κ j (s) ds +
∑
j∈Ci

μ∗
j Y j (t), t ≥ 0.

Equations (19) and (39) of the system state also imply that Zn
0 (t) = −∑I

i=1 Zn
i (t)

and that Zn
i (t) ≥ 0 for i = 1, . . . , I and t ≥ 0. Thus, in the approximating BCP, the

following relationships hold for t ≥ 0:

Z0(t) = −
I∑

i=1

Zi (t) and Zi (t) ≥ 0 for i = 1 . . . , I .

Similarly, it is clear that Eqs. (9) and (43) and (44) give rise to Eq. (52) in the BCP;
Eqs. (17) and (41) give rise to Eq. (54); and Eq. (42) gives rise to Eq. (51).

To complete the formal derivation of the Brownian control problem, we argue that
V̂ n ≈ ξ for large n, where V̂ n and ξ are given by Eqs. (46) and (47), respectively.
First, observe that by Taylor’s theorem we have

π

(
λ∗ + 1√

n
ζ n(s)

)
= π

(
λ∗)+ ∇π

(
λ∗)′ 1√

n
ζ n(s)

+ 1

2n
ζ n(s)′∇2π

(
λ∗) ζ n(s) + Rλ∗,3

(
1√
n
ζ n(s)

)
,

where Rλ∗,3
(

1√
n
ζ n(s)

)
= O(n−3/2) is a third-order remainder term.8 Moreover, note

that the term ∇π (λ∗)′ ζ n(s)/
√

n vanishes because λ∗ is a maximizer of π (λ) and is

8 In particular, the remainder term is given by

Rλ∗,3

(
1√
n

ζ n(s)

)
=

∑
α1,...,αI ∈{0,1,2,3}
s.t. α1+···+αI =3

∂3π
(
λ∗ + C√

n
ζ n(s)

)

∂x
α1
1 ∂x

α2
2 · · · ∂x

αI
I

I∏
i=1

(
1√
n
ζ n
i (s)

)αi

αi ! for some C ∈ (0, 1).

123

52 Queueing Systems (2024) 106:1–66

in the interior of the feasible regionL (see Assumption 2), implying that∇π (λ∗) = 0.
Therefore, we have that

π

(
λ∗ + 1√

n
ζ n(s)

)
= π

(
λ∗)− 1

n
ζ n(s)′Hζ n(s) + O

(
n−3/2

)
,

where H = − 1
2∇2π (λ∗). Using this and Eqs. (35) and (43), it follows that

πn (λn(s)
) = nπ

(
λ∗)− ζ n(s)′Hζ n(s) + O

(
n−1/2

)
. (150)

Finally, using Eqs. (39), (41) and (46), and (150), it is straightforward to derive the
following:

V̂ n(t) = n
(
π
(
λ∗)−hn

0

)
t−
[∫ t

0
πn(λn(s)

)
ds−

∫ t

0

I∑
i=0

hn
i Qn

i (s) ds−(cn)′ I n(t)

]

=
∫ t

0

[
ζ n(s)′Hζ n(s) + O

(
n−1/2

)]
ds +

∫ t

0

I∑
i=0

hi Zn
i (s) ds + c′U n(t).

Therefore, replacing V̂ n , Zn , ζ n , and U n by their formal limits ξ , Z , ζ , and U , we
arrive at the following cost process of the approximating Brownian control problem:

ξ(t) =
∫ t

0
ζ(s)′Hζ(s) ds +

∫ t

0

I∑
i=0

hi Zi (s) ds + c′U (t), t ≥ 0.

Note that it is a diagonal matrix, i.e., H = diag(α1, . . . , αI) where

αi = −
(
�−1

i

)
(λ∗

i) − λ∗
i

2

(
�−1

i

)′′
(λ∗

i), i = 1, . . . , I .

Using this we further simplify the limiting cost process ξ(t) as follows:

ξ(t) =
∫ t

0

[
I∑

i=1

αiζ
2
i (s) +

I∑
i=0

hi Zi (s)

]
ds + c′U (t), t ≥ 0.

A.2 Derivation of Eq. (143)

Recall that the proposed chosen demand rates are

λn
i = nλ∗

i + √
nq(t), i = 1, . . . , I , t ≥ 0,

123

Queueing Systems (2024) 106:1–66 53

where q(t) = 1
2αi

v
(

W n(t)√
n

)
. Therefore, the proposed pricing policy for region i is

given as follows:

pn
i (t) = (�n

i

)−1 (
λn

i (t)
)

= (�n
i

)−1 (
nλ∗

i + √
nq(t)

)

= �−1
i

(
λ∗

i + q(t)√
n

)
,

where the third equality follows from the fact that
(
�n

i

)−1
(nx) = �−1

i (x) for x ∈ L.
Then note that by Taylor’s theorem we have

pn
i (t) = �−1

i

(
λ∗

i

)+
(
�−1

i

)′ (
λ∗

i

) q(t)√
n

+ 1

2

(
�−1

i

)′′

(
λ∗

i + c · q(t)√
n

)(
q(t)√

n

)2
for some c ∈ (0, 1) ,

which implies that

pn
i (t) = �−1

i

(
λ∗

i

)+
(
�−1

i

)′ (
λ∗

i

) q(t)√
n

+ O

(
1

n

)

= �−1
i

(
λ∗

i

)+
(
�−1

i

)′ (
λ∗

i

)
2αi

√
n

v

(
W n(t)√

n

)
+ O

(
1

n

)
.

As an aside, observe that by rearranging terms we have

√
n
(

pn
i (t) − �−1

i

(
λ∗

i

)) =
(
�−1

i

)′ (
λ∗

i

)
2αi

v

(
W n(t)√

n

)
+ O

(
1√
n

)
.

This implies that our proposed dynamic pricing policy coincides with the static prices
to a first-order approximation, but deviates from the static prices on the second order,
i.e., order 1/

√
n.

B Miscellaneous proofs

Proof of Lemma 1 This proof follows in an almost identical fashion to Lemma 2 in
Ata et al. [9], but we include it for completeness. It consists of four steps. We let en

denote the nth unit basis vector in a Euclidean space of appropriate dimension. That
is, the nth component of en is one, whereas its other components are zero. Moreover,
recall from the discuss following Assumption 3 that for a vector y ∈ R

J , we write
y = (yB, yN) where yB ∈ R

b and yN ∈ R
J−b.

123

54 Queueing Systems (2024) 106:1–66

Step 1:Consider the set of basic activity rates that do not cause any server idleness, i.e.,{
y ∈ R

J : ByB = 0, yN = 0
}
. First, we show that this set is the span of ¯̄C , defined

next:

¯̄C =
{

e j − e j ′ : (j, j ′
) ∈ C̄, e j , e j ′ are unit basis vectors in RJ

}
, (151)

where C̄ = {(j, j ′
) : j, j ′ ∈ {1, . . . , b} such that s(j) = s(j ′)

}
. That is, C̄ is the set

of all pairs of basic activities undertaken by the same server. Note that the difference
e j − e j ′ in Eq. (151) captures the trade-off server s(j) makes by increasing the rate at
which activity j is undertaken (from its nominal value x∗

j) at the expense of decreasing
the rate of activity j ′. By making such adjustments to the nominal basic activity
rates x∗

B , the system manager can redistribute the workload between buffers b(j) and
b(j ′) without incurring any idleness. As such, we intuitively expect that taking linear
combinations of such activity rates in ¯̄C should yield the set of activity rates that do
not result in any idleness, i.e., the set

{
y ∈ R

J : ByB = 0, yN = 0
}
. In summary, in

Step 1 we prove that

span
(¯̄C
)

=
{

y ∈ R
J : ByB = 0, yN = 0

}
.

To prove this, we show inclusions of both sets. First, let y ∈
{

y ∈ R
J : ByB = 0,

yN = 0

}
. To prove that y ∈ span

(¯̄C
)
, we show that there exist constants a j j ′ ,

(j, j ′) ∈ C̄ , such that y = ∑(j, j ′)∈C̄ a j j ′
(

e j − e j ′
)

. To find these constants, it will

be convenient to define the sets

Āi = Ai ∩ {1, . . . , b} ,

whereAi is the set of activities undertaken by server i , see Eq. (3). To bemore specific,
Āi consists of all basic activities undertaken by server i . After possibly relabeling,
suppose that the basic activities are ordered so that

Āi = {bi−1 + 1, . . . , bi } for i = 1, . . . , I ,

where 0 = b0 < b1 < b2 < · · · < bI = b. We define constants a j j ′ for (j, j ′) ∈ C̄
as follows:

a j j ′ =
{∑k

l=bi−1+1 yl , if
(

j, j ′
) = (k, k + 1) for k = bi−1 + 1, . . . , bi − 1

and i = 1, . . . , I ,
0, otherwise.

123

Queueing Systems (2024) 106:1–66 55

Therefore, we have that

∑
(j, j ′)∈C̄

a j j ′
(

e j − e j ′
)

=
I∑

i=1

bi −1∑
k=bi−1+1

ak, k+1

(
ek − ek+1

)

=
I∑

i=1

bi −1∑
k=bi−1+1

⎡
⎣
⎛
⎝ k∑

l=bi−1+1

yl

⎞
⎠(ek − ek+1

)⎤⎦

=
I∑

i=1

[
ybi−1+1

(
ebi−1+1 − ebi−1+2

)
+ (ybi−1+1 + ybi−1+2

) (
ebi−1+2 − ebi−1+3

)

+ · · · +
⎛
⎝ bi −2∑

l=bi−1+1

yl

⎞
⎠(ebi −2 − ebi −1

)
+
⎛
⎝ bi −1∑

l=bi−1+1

yl

⎞
⎠(ebi −1 − ebi

)]

=
I∑

i=1

[
ybi−1+1ebi−1+1 + (ybi−1+2 + ybi−1+1 − ybi−1+1

)
ebi−1+2

+ · · · +
⎛
⎝ bi −1∑

l=bi−1+1

yl −
bi −2∑

l=bi−1+1

yl

⎞
⎠ ebi −1 −

⎛
⎝ bi −1∑

l=bi−1+1

yl

⎞
⎠ ebi

]

=
I∑

i=1

⎡
⎣ybi−1+1ebi−1+1 + ybi−1+2ebi−1+2 + · · · + ybi −1ebi −1 −

⎛
⎝ bi −1∑

l=bi−1+1

yl

⎞
⎠ ebi

⎤
⎦

=
I∑

i=1

[
ybi−1+1ebi−1+1 + ybi−1+2ebi−1+2 + · · · + ybi −1ebi −1 − (−ybi

)
ebi
]

=
I∑

i=1

bi∑
k=bi−1+1

ykek

=
J∑

j=1

y j e
j ,

the first two equalities following from the definition of the a j j ′ ,
the fourth equality from algebraic rearrangements, and the fifth equality from can-

celing terms. To derive the sixth equality note that y satisfies ByB = 0, which implies

bi∑
l=bi−1+1

yl = 0 for i = 1, . . . , I .

123

56 Queueing Systems (2024) 106:1–66

Equivalently, we have that

bi −1∑
l=bi−1+1

yl = −ybi for i = 1, . . . , I .

Substituting this for the last term of the fifth equality yields the sixth equality. Finally,
the eighth equality from the facts that yN = 0 and that the sets Āi , i = 1, . . . , I ,

partition the basic activities. Since y =∑J
j=1 y j e j , we conclude that y ∈ span

(¯̄C
)
.

Conversely, let y ∈ span
(¯̄C
)
. Then there are constants a j j ′ , (j, j ′) ∈ C̄ , such that

y =
∑

(j, j ′)∈C̄

a j j ′
(

e j − e j ′
)

.

Since C̄ consists only of pairs of basic activities, it follows that yN = 0. Furthermore,
for (j, j ′) ∈ C̄ and i ∈ {1, . . . , I }, we have

[
A
(

e j − e j ′
)]

i
=

b∑
l=1

Ail

(
e j

l − e j ′
l

)
=

b∑
l=1

1{s(l)=i}
(

e j
l − e j ′

l

)

= 1{s(j)=i} − 1{s(j ′)=i} = 0,

the second equality holding by Eq. (1) and the fourth equality holding since s(j) =
s(j ′). Therefore, A

(
e j − e j ′

)
= 0 for all (j, j ′) ∈ C̄ , implying that Ay = 0 by

linearity. So, y ∈ {y ∈ R
J : Ay = 0, yN = 0

}
.

Step 2: In this step, we show thatN = span
(

C̃
)
, where C̃ =

{
Ry : y ∈ ¯̄C

}
. To see

this, recall thatN = {H yB : ByB = 0, yB ∈ R
b
} = {Ry : Ay = 0, yN = 0} . Thus,

it follows from Step 1 and the definition of C̃ that N = span
(

C̃
)
.

Step 3: In this step, we show that C̃ =
{
μ∗

j

(
eb(j) − eb(j ′)

)
: (j, j ′

) ∈ C̄, eb(i), eb(j ′)

∈ R
I
}
. To see this, note that for (j, j ′) ∈ C̄ and i ∈ {1, . . . , I }, we have that

[
R
(

e j − e j ′
)]

i
=

J∑
l=1

Ril

(
e j

l − e j ′
l

)
=

J∑
l=1

μ∗
l 1{b(l)=i}

(
e j

l − e j ′
l

)

= μ∗
j1{b(j)=i} − μ∗

j ′1{b(j ′)=i}

= μ∗
j

(
1{b(j)=i} − 1{b(j ′)=i}

) = μ∗
j

(
eb(j)

i − eb(j ′)
i

)
,

123

Queueing Systems (2024) 106:1–66 57

the second equality following from Eqs. (2) and (25) and the fourth equality following
from the fact that s(j) = s(j ′) (since (j, j ′) ∈ C̄) and Eq. (24). That is,

R
(

e j − e j ′
)

= μ∗
j

(
eb(j) − eb(j ′)

)
for (j, j ′) ∈ C̄ . (152)

Then using the definition of ¯̄C , we write

C̃ =
{

Ry : y ∈ ¯̄C
}

=
{

Ry : y = e j − e j ′ such that (j, j ′) ∈ C̄, e j , e j ′ are unit basis vectors
}

=
{

R
(

e j − e j ′
)

: (j, j ′) ∈ C̄, e j , e j ′ are unit basis vectors
}

=
{
μ∗

j

(
eb(j) − eb(j ′)

)
: (j, j ′) ∈ C̄, e j , e j ′ are unit basis vectors

}
,

where the last equality follows from Eq. (152). Hence, the result holds. In particular,
by the definition of buffer communication, note that

C̃ =
{
μ∗

j

(
ei − ei ′

)
: buffers i and i ′ communicate directly, ei , ei ′ ∈ R

I
}

.

Step 4: We consider the matrix M defined in Lemma 1 (see Eq. (59)) and show that
its rows form a basis for M. To that end, let Ml , l = 1, . . . , L , be the rows of the
matrix M given in Eq. (59). Since the buffer pools partition the servers, the rows
of M are linearly independent. Thus, to complete the proof, it suffices to show that

M = span
(
M1, . . . , M L

)
. Recalling that M = N⊥ and N = span

(
C̃
)
, it follows

that a ∈ M if and only if a · z = 0 for all z ∈ C̃ . Moreover, since μ∗
j > 0 for all

j ∈ {1, . . . , b}, it follows from Step 3 that

N = span
({

ei − ei ′ : buffers i and i ′ communicate directly, ei , ei ′ ∈ R
I
})

.

Therefore, a ∈ M if and only if ai = ai ′ for all buffers i and i ′ that communicate
directly.

Toprove thatM = span
(
M1, . . . , M L

)
weshow inclusions of both sets.On the one

hand, let a ∈ M. Then ai = ai ′ for all buffers i and i ′ that communicate directly. By
definition of buffer communication, it immediately follows that ai = ai ′ for all buffers
i and i ′ that communicate. That is, ai = ai ′ for all buffers i and i ′ that are in the same
buffer pool. Thus, a ∈ span

(
M1, . . . , M L

)
, implying thatM ⊆ span

(
M1, . . . , M L

)
.

On the other hand, to show that span
(
M1, . . . , M L

) ⊆ M, it suffices to show that
Ml ∈ M for each l = 1, . . . , L . To that end, it is enough to show that Ml

i = Ml
i ′ for all

buffers i and i ′ that communicate directly. However, this trivially holds by Eq. (59),
since buffers i and i ′ that communicate directly are in the same buffer pool. Thus,
span

(
M1, . . . , M L

) ⊆ M. ��

123

58 Queueing Systems (2024) 106:1–66

Proof of Lemma 2 It is enough to show that (M R)l j = (G A)l j for all l = 1, . . . , L
and j = 1, . . . , J , where G is given by Eq. (60). Indeed, by Eqs. (2), (25), and (59),

(M R)l j =
I∑

i=1

Mli Ri j =
I∑

i=1

1{i∈Pl }μ
∗
j1{b(j)=i} = μ∗

j1{b(j)∈Pl }. (153)

On the other hand, by Eqs. (1) and (60),

(G A)l j =
I∑

i=1

Gli Ai j =
I∑

i=1

λ∗
i 1{i∈Sl }1{s(j)=i} = λ∗

s(j)1{s(j)∈Sl }. (154)

Note that by Eq. (24) we have μ∗
j = λ∗

s(j) and by Eq. (58) we have that b(j) ∈ Pl if
and only if s(j) ∈ Sl . Thus, the desired result immediately follows by Eqs. (153) and
(154). ��
Proof of Lemma 3 When L = 1, all buffers are in a single buffer pool. Thus, it follows
immediately from Eq. (59) that M = e′. Furthermore, by definition of buffer commu-
nication and Eq. (58), there is a single server pool. It then follows from Eq. (60) that
G = (λ∗)′.

To prove the first relationship in Eq. (69), note that

Mηq = ηMq = ηe′q = η

I∑
i=1

qi = η,

where the second equality follows from M = e′ and where the fourth equality follows
from the fact that q is a probability vector. To prove the second relationship in Eq. (69),
first note that MC = e′ ∈ R

J . This follows from M = e′ ∈ R
I , the definition of C in

Eq. (2), and the fact that C has one nonzero element per column. Therefore,

MCdiag(x∗)A′ = e′diag(x∗)A′ = (x∗)′ A′ = (Ax∗)′ = e′ ∈ R
I ,

the fourth equality following from the heavy traffic assumption, see Eq. (29). ��
Proof of Lemma 4 This is a straightforward convex optimization problem. Forming the
Lagrangian

L(ζ, ν) =
I∑

i=1

αiζ
2
i − ν

I∑
i=1

ζi + νx,

where ν is the Lagrange multiplier, the necessary first-order conditions then give

ζ ∗
i = γ

2αi
, i = 1, . . . , I .

123

Queueing Systems (2024) 106:1–66 59

Substituting this into the constant e′ζ = x yields ν = 2x/α̂ and

ζ ∗
i = x

αi α̂
, i = 1, . . . , I . (155)

The optimality of this solution follows from the convexity of the objective. Substituting
(155) in the objective function yields c(x) = x2/α̂ as desired. ��
Proof of Proposition 1 Let (Y , ζ) be an admissible control for (48) and (54) with the
corresponding state process Z and idleness process U . Letting W (t) = M Z(t) for
t ≥ 0, (48) implies that (65) holds, and (64) holds by definition. Similarly, (66) and
(67) follow from (53) and (54) whereas (68) follows from (52). Thus, (Z , U , ζ) of the
BCP formulation (48) and (54) is an admissible policy for the RBCP (63) and (68).
Because the two formulations have the same process Z , U , ζ , they have the same cost.

The converse follows exactly as in (the second part of) the proof of Theorem 1
in Harrison and Van Mieghem [56] (see pages 753–754) with the only substantive
difference being (aside from the obvious notational differences) the process X on
their Eq. (36) on page 755 is replaced with

B(t) − ηq
∫ t

0
e′Z(s)ds − Cdiag(x∗)

∫ t

0
κ(s)ds

in our setting. Then following the same steps in their proof shows that the analogy of
the process Y (in our setting) defined as in their Eq. (35) and ζ is admissible for our
BCP (48) and (54). Moreover, because (Y , ζ) results in the same queue length process
Z . Its cost is the same as that of the policy (Z , U , ζ) for RBCP (63) and (68). ��
Proof of Proposition 2 Given an admissible policy θ for EWF and the corresponding
process W , L , we set Zi∗ ≡ W and Zi ≡ 0 for i
= i∗ and Uk∗ ≡ L and Uk ≡ 0
for k
= k∗. Moveover, we set ζi (s) = θ(s)/(αi α̂i) for i = 1, . . . , I , which results
in
∑I

i=1 αiζ
2
i (s) = c(θ(s)) by Lemma 4. Then it follows from (77) and (78) that

(Z , U , ζ) has the same cost in RBCP as θ does in EWF.
To prove the converse, let Z , U , ζ be an admissible policy for RBCP, and let

θ(s) = e′ζ(s), W (s) = e′Z(s), and L(s) = (λ∗)′U (s), s ≥ 0.

It is easy to verify that θ(·) is admissible for EWF.Moreover, c(θ(s)) ≤∑I
i=1 αiζ

2
i (s)

by Lemma 4 and that hW (s) ≤∑I
i=1(hi − h0)Zi (s) and r L(s) ≤ c′U (s) for s ≥ 0.

Thus, the cost of θ for the EWF is less than or equal to that of the policy (Z , U , ζ) for
the RBCP. ��
Proof of Proposition 3 Consider the auxiliary stationary reflected diffusion on [0,∞),

denoted by
{

W̃ (t), t ≥ 0
}
, associated with the drift rate function− (ηy − a + θ∗(y))

and variance parameter σ 2. As noted on pages 470–471 of Browne and Whitt [34]—
also see Mandl [74] and Karlin and Taylor [64]—its probability density function,

123

60 Queueing Systems (2024) 106:1–66

denoted by ϕ, is given as follows:

ϕ (x) =
exp

{
−
∫ x

0

2

σ 2

(
ηy − a + θ∗(y)

)
dy

}
∫ ∞

0
exp

{
−
∫ y

0

2

σ 2

(
ηs − a + θ∗(s)

)
ds

}
dy

, x ∈ [0,∞) (156)

provided all integrals are finite, which we verify next. To this end, let k =
inf {y ≥ 0 : v(y) ≥ 0} where (v, β∗) solve the Bellman equation (89) and (90), and
note from Eq. (90) that −r ≤ v(y) ≤ 0 for y ≤ k and 0 ≤ v(y) ≤ h/η for y ≥ k. In
order to verify the integrals above are finite, using Eq. (91) note that

exp

{
−
∫ y

0

2

σ 2

(
ηs − a + θ∗(s)

)
ds

}
= exp

{
−
∫ y

0

2

σ 2

(
ηs − a + α̂

2
v(s)

)
ds

}

= exp

{
−ηy2 − ay

σ 2

}
exp

{
− α̂

σ 2

[∫ k

0
v(s) ds +

∫ y

k
v(s) dy

]}

≤ exp

{
−ηy2 − ay

σ 2

}
exp

{
α̂

σ 2 rk

}
, (157)

from which we also deduce that the integral in the denominator of the right hand side
of Eq. (156) is finite. Moreover, it follows from Eq. (157) that the stationary diffusion
W̃ has finite moments. In particular,

E
[
W̃ (0)

]
= E

[
W̃ (t)

]
< ∞, t < ∞. (158)

Next, we define another auxiliary stationary diffusion, denoted by W̃ ∗, as follows:

W̃ ∗(t) = W ∗(0) + W̃ (t).

Noting W ∗(0) < W̃ ∗(0) almost surely, we define the stopping time τ as follows:

τ = inf
{

t ≥ 0 : W ∗(t) ≥ W̃ ∗(t)
}

and introduce the following process:

Ŵ ∗(t) =
{

W ∗(t), t < τ,

W̃ ∗(t), t > τ.

By the strong Markov property of diffusions, Ŵ ∗ has the same distribution as W ∗.
Moreover,

Ŵ ∗(t) ≤ W̃ ∗(t), t ≥ 0.

123

Queueing Systems (2024) 106:1–66 61

Therefore, we conclude that

E
[
W ∗(t)

] = E
[
Ŵ ∗(t)

]

≤ E
[
W̃ ∗(t)

]

= W ∗(0) + E
[
W̃ (t)

]

= W ∗(0) + E
[
W̃ (0)

]
< ∞, (159)

where the second equality follows from the definition of W̃ ∗, the third equality from
the stationarity of W̃ , and the last equality from Eq. (158). Thus, we conclude from
W ∗(t) ≥ 0 for t ≥ 0 and Eq. (159) that

lim
t→∞

E
[
W ∗(t)

]
t

≤ lim
t→∞

W ∗(0) + E
[
W̃ (0)

]
t

= 0,

as desired. ��
The next lemma aids in the proof of Lemma 6. To state the result, it will be conve-

nient to rewrite Eqs. (103) and (104) as follows:

v′(x) = q2v
2(x) + q1(x)v(x) + q0(x), x ≥ 0, (160)

v(0) = − r , (161)

where q0(x) = 2
σ 2 (β − hx), q1(x) = 2

σ 2 (ηx − a), and q2 = σ̂
2σ 2 > 0 for x ≥ 0.

Lemma 23 For each v ∈ C1[0,∞) satisfying Eqs. (160) and (161), y(x) =
exp
{−q2

∫ x
0 v(t) dt

}
satisfies

y′′(x) − q1(x)y′(x) + q2q0(x)y(x) = 0, x ≥ 0, (162)

y(0) = 1, y′(0) = rq2. (163)

Conversely, for each y ∈ C2[0,∞) satisfying Eqs. (162) and (163), v = −y′/(q2y)

satisfies Eqs. (160)–(161).

Proof of Lemma 23 Let v ∈ C1[0,∞) satisfy Eqs. (160) and (161) and let y(x) =
exp
{−q2

∫ x
0 v(t) dt

}
. Then it follows that

y′′(x) − q1(x)y′(x) + q2q0(x)y(x)

=
[
exp

{
−q2

∫ x

0
v(t) dt

}
· (−q2v(x))

]′

− q1(x)

[
exp

{
−q2

∫ x

0
v(t) dt

}
· (−q2v(x))

]

123

62 Queueing Systems (2024) 106:1–66

+ q2q0(x) exp

{
−q2

∫ x

0
v(t) dt

}

=
[
exp

{
−q2

∫ x

0
v(t) dt

}
· (−q2v(x))2

+ exp

{
−q2

∫ x

0
v(t) dt

}
· (−q2v

′(x)
)]

+ q2q1(x)v(x) exp

{
−q2

∫ x

0
v(t) dt

}
+ q2q0(x) exp

{
−q2

∫ x

0
v(t) dt

}

= q2 exp

{
−q2

∫ x

0
v(t) dt

} [
q2v

2(x) − v′(x) + q1(x)v(x) + q0(x)
]

= 0.

Moreover, y(0) = exp {−q2 · 0} = 1 and y′(0) = −q2 exp {−q2 · 0} v(0) = rq2.
On the other hand, let y ∈ C2[0,∞) satisfy Eqs. (162) and (163) and let v =

−y′/(q2y). Then it follows that

v′(x) =
[
− y′(x)

q2y(x)

]′
= − 1

q2

[
y′′(x)

y(x)
−
(

y′(x)

y(x)

)2]
= − y′′(x)

q2y(x)
+ q2v

2(x)

= −q1(x)y′(x)

q2y(x)
+ q0(x) + q2v

2(x) = q2v
2(x) + q1(x)v(x) + q0(x).

Moreover, v(0) = −y′(0)/ (q2y(0)) = − (rq2) / (q2 · 1) = −r . This completes the
proof. ��
Proof of Lemma 6 It is known that Eqs. (162) and (163) can be transformed into a
degenerate hypergeometric equation known as a Kummer’s equation; see Polyanin
and Zaitsev [79]. Such equations are known to have confluent hypergeometric function
solutions; see Bateman and Erdélyi [22] and Abramowitz and Stegun [1]. It then
follows from Lemma 23 that Eqs. (160) and (161) have a solution v. To complete the
proof, we must show that the solution v to Eqs. (160) and (161) is unique. To this end,
define the function f by

f (x, u) = q2v
2 + q1(x)v + q0(x), (x, v) ∈ [0,∞) × (−∞,∞).

To prove uniqueness, it is enough to show that f is locally Lipschitz in v, i.e., that
f is Lipschitz in v when restricted to the compact domain [0, N] × [−M, M] where
N , M > 0. More specifically, local Lipschitzness will demonstrate uniqueness on
each compact interval, which can then be easily extended to the positive real line. To
this end, for x ∈ [0, N] and v1, v2 ∈ [−M, M] we have that

| f (x, v1) − f (x, v2)| =
∣∣∣q2v21 + q1(x)v1 − q2v

2
2 − q1(x)v2

∣∣∣
≤ q2

∣∣∣v21 − v22

∣∣∣+ |q1(x)| |v1 − v2|

123

Queueing Systems (2024) 106:1–66 63

=
[

q2 |v1 + v2| + 2

σ 2 (ηx + |a|)
]

· |v1 − v2|

≤
[
2Mq2 + 2

σ 2 (ηN + |a|)
]

|v1 − v2| .

Thus, f is locally Lipschitz in v. This completes the proof. ��

References

1. Abramowitz, M., Stegun, I.A.: Handbook Mathematical Functions with Formulas, Graphs, and Math-
ematical Tables. Dover Publications, New York (2003)

2. Adusumilli, K.M., Hasenbein, J.J.: Dynamic admission and service rate control of a queue. Queueing
Syst. 66(2), 131–154 (2010)

3. Afèche, P., Liu, Z., Maglaras, C.: Ride-hailing networks with strategic drivers: the impact of platform
control capabilities on performance. Working Paper (2018)

4. Afèche, P., Liu, Z., Maglaras, C.: Surge pricing an dynamic matching for hotspot demand shock in
ride-hailing networks. Working Paper (2022)

5. Ata, B.: Dynamic power control in a wireless static channel subject to a quality-of-service constraint.
Oper. Res. 53(5), 842–851 (2005)

6. Ata, B.: Dynamic control of a multiclass queue with thin arrival streams. Oper. Res. 54(5), 876–892
(2006)

7. Ata, B., Barjesteh, N.: Dynamic pricing of a multiclass make-to-stock queue. Working Paper (2020)
8. Ata, B., Barjesteh, N., Kumar, S.: Enhancing equitable access to taxis in NYC through search friction

reduction and spatial pricing. Working Paper (2019)
9. Ata, B., Barjesteh, N., Kumar, S.: Dynamic matching and centralized relocation in ridesharing plat-

forms. Working Paper (2020)
10. Ata, B., Kumar, S.: Heavy traffic analysis of open processing systems with complete resource pooling:

asymptotic optimality of discrete review policies. Ann. Appl. Probab. 15(1A), 331–391 (2005)
11. Ata, B., Harrison, J.M., Shepp, L.A.: Drift rate control of a Brownian processing system. Ann. Appl.

Probab. 15(2), 1145–1160 (2005)
12. Ata, B., Field, J., Lee, D., Tongarlak, M.H.: A dynamic model for managing volunteer engagement.

Working Paper (2021)
13. Ata,B., Lin,W.:Heavy traffic analysis ofmaximumpressure policies for stochastic processingnetworks

with multiple bottlenecks. Queueing Syst. 59, 191–235 (2008)
14. Ata, B., Olsen, T.L.: Near-optimal dynamic lead-time quotation and scheduling under convex–concave

customer delays. Oper. Res. 57(3), 753–768 (2009)
15. Ata, B., Olsen, T.L.: Congestion-based leadtime quotation and pricing for revenue maximization with

heterogeneous customers. Queueing Syst. 73(1), 35–78 (2013)
16. Ata, B., Shneorson, S.: Dynamic control of an M/M/1 service system with adjustable arrival and

service rates. Manag. Sci. 52(11), 1778–1791 (2006)
17. Ata, B., Tongarlak, M.H.: On scheduling a multiclass queue with abandonments under general delay

costs. Queueing Syst. 74(1), 65–104 (2013)
18. Ata, B., Zachariadis, K.E.: Dynamic power control in a fading downlink channel subject to an energy

constraint. Queueing Syst. 55(1), 41–69 (2007)
19. Banerjee, S., Freund, D., Lykouris, T.: Pricing and optimization in shared vehicle systems: an approx-

imation framework. Oper. Res. 70(3), 1783–1805 (2021)
20. Banerjee, S., Kanoria, Y., Qian, P.: Dynamic assignment control of a closed queueing network under

complete resource pooling. Working Paper (2020)
21. Banerjee, S., Riquelme,C., Johari, R.: Pricing in ride-sharing platforms: a queueing-theoretic approach.

In: Proceedings of the SixteenthACMConference onEconomics andComputation, pp. 639–639 (2015)
22. Bateman, H., Erdélyi, A.: Higher Transcendental Functions. McGraw-Hill, New York (1953)
23. Bell, S.L., Williams, R.J.: Dynamic scheduling of a system with two parallel servers in heavy traffic

with resource pooling: asymptotic optimality of a threshold policy. Ann. Appl. Probab. 11(3), 608–649
(2001)

123

64 Queueing Systems (2024) 106:1–66

24. Bell, S.L.,Williams, R.J.: Dynamic scheduling of a parallel server system in heavy trafficwith complete
resource pooling: asymptotic optimality of a threshold policy. Electron. J. Probab. 10, 1044–1115
(2005)

25. Bertsimas, D., Jaillet, P., Martin, S.: Online vehicle routing: the edge of optimization in large-scale
applications. Oper. Res. 67(1), 143–162 (2019)

26. Besbes, O., Castro, F., Lobel, I.: Surge pricing and its spatial supply response. Manag. Sci. 67(3),
1350–1367 (2021)

27. Besbes, O., Castro, F., Lobel, I.: Spatial capacity planning. Oper. Res. 70(2), 1271–1291 (2021)
28. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)
29. Bimpikis, K., Candogan, O., Saban, D.: Spatial pricing in ride-sharing networks. Oper. Res. 67(3),

744–769 (2019)
30. Bramson, M.: Stability of Queueing Networks. Springer, Berlin (2008)
31. Bramson, M., Dai, J.G.: Heavy traffic limits for some queueing networks. Ann. Appl. Probab. 11(1),

49–90 (2001)
32. Bramson, M., Dai, Williams, R.J.: Two workload properties for Brownian networks. Queueing Syst.

45(3), 191–221 (2003)
33. Braverman, A., Dai, J.G., Liu, X., Ying, L.: Empty-car routing in ridesharing systems. Oper. Res.

67(5), 1437–1452 (2019)
34. Browne, S., Whitt, W.: Piecewise-linear diffusion processes. In: Dshalalow, J.H. (ed.) Advances in

Queueing: Theory, Methods, and Open Problems, pp. 463–480. CRC Press, Boca Raton (1995)
35. Cachon, G., Daniels, K., Lobel, R.: The role of surge pricing on a service platformwith self-scheduling

capacity. Manuf. Serv. Oper. Manag. 19(3), 337–507 (2017)
36. Castillo, J.C., Knoepfle, D., Weyl, G.: Matching in ride hailing: wild goose chases and how to solve

them. Working Paper (2021)
37. Çelik, S.,Maglaras, C.: Dynamic pricing and lead-time quotation for amulticlassmake-to-order queue.

Manag. Sci. 54(6), 1132–1146 (2008)
38. Chen, Q., Lei, Y., Jasin, S.: Real-time spatial-intertemporal dynamic pricing for balancing supply and

demand in a network. Working Paper (2020)
39. Chen, M.K., Sheldon, M.: Dynamic pricing in a labor market: surge pricing and flexible work on the

Uber platform. In: Proceedings of the 2016 ACM Conference on Economics and Computation (2016)
40. Dai, J.G., Lin, W.: Maximum pressure policies in stochastic processing networks. Oper. Res. 53(2),

197–218 (2005)
41. Dai, J.G., Lin, W.: Asymptotic optimality of maximum pressure policies in stochastic processing

networks. Ann. Appl. Probab. 18(6), 2239–2299 (2008)
42. Ethier, S., Kurtz, T.: Markov Processes: Characterization and Convergences. Wiley, New York (2005)
43. Garg, N., Nazerzadeh, H.: Driver surge pricing. Manag. Sci. 68(5), 3219–3235 (2021)
44. George, J.M., Harrison, J.M.: Dynamic control of a queue with adjustable service rate. Oper. Res.

49(5), 720–731 (2001)
45. Gokpinar, B., Selcuk, C.: The selection of prices and commissions in a spatial model of ride-hailing.

Working Paper (2019)
46. Ghosh, A.P., Weerasinghe, A.P.: Optimal buffer size for a stochastic processing network in heavy

traffic. Queueing Syst. 55(3), 147–159 (2007)
47. Ghosh, A.P., Weerasinghe, A.P.: Optimal buffer size and dynamic rate control for a queueing system

with impatient customers in heavy traffic. Stoch. Process. Appl. 120(11), 2103–2141 (2010)
48. Guda,H., Subramanian,U.:YourUber is arriving:managing on-demandworkers through surge pricing,

forecast communication, and worker incentives. Manag. Sci. 65(5), 1995–2014 (2019)
49. Harrison, J.M.: Brownian models of queueing networks with heterogeneous customer populations.

In: Fleming, W., Lions, P.-L. (eds.), Stochastic Differential Systems, Stochastic Control Theory and
Applications, IMAVolumes in Mathematics and its Applications, vol. 10, pp. 147–186. Springer, New
York (1988)

50. Harrison, J.M.: The BIGSTEP approach to flow management in stochastic processing networks. In:
Kelly, F.P., Ziedins, I., Zachary, S. (eds.), Stochastic Networks: Theory and Applications. pp. 57–90.
Oxford University Press (1996)

51. Harrison, J.M.: Heavy traffic analysis of a system with parallel servers: asymptotic optimality of
discrete-review policies. Ann. Appl. Probab. 8(3), 822–848 (1998)

52. Harrison, J.M.: Brownian models of open processing networks: canonical representation of workload.
Ann. Appl. Probab. 10(1), 75–103 (2000)

123

Queueing Systems (2024) 106:1–66 65

53. Harrison, J.M.: A broader view of Brownian networks. Ann. Appl. Probab. 13(3), 1119–1150 (2003)
54. Harrison, J.M.:BrownianModels ofPerformance andControl.CambridgeUniversityPress,Cambridge

(2013)
55. Harrison, J.M., Wein, L.M.: Scheduling networks of queues: heavy traffic analysis of a simple open

network. Queueing Syst. 5(4), 265–280 (1989)
56. Harrison, J.M., Van Mieghem, J.A.: Dynamic control of Brownian networks: state space collapse and

equivalent workload formulation. Ann. Appl. Probab. 7(3), 747–771 (1997)
57. Harrison, J.M., López, M.J.: Heavy traffic resource pooling in parallel-server systems. Queueing Syst.

33(4), 339–368 (1999)
58. He, L., Hu, Z., Zhang, M.: Robust repositioning for vehicle sharing. Manuf. Serv. Oper. Manag. 22(2),

241–256 (2020)
59. Hosseini, M., Milner, J., Romero, G.: Dynamic relocations in car-sharing networks. Working Paper

(2021)
60. Hu, B., Hu, M., Zhu, H.: Surge pricing and two-sided temporal responses in ride-hailing. Manag. Serv.

Oper. Manag. 24(1), 91–109 (2022)
61. Hu, M., Zhou, Y.: Dynamic type matching. Manag. Serv. Oper. Manag. 24(1), 125–142 (2021)
62. Iglehart, D.: Limiting diffusion approximations for the many server queue and the repairman problem.

J. Appl. Probab. 2(2), 429–441 (1965)
63. Jacob, J., Roet-Green, R.: Ride solo or pool: designing price-service menus for a ride-sharing platform.

Eur. J. Oper. Res. 295(3), 1008–1024 (2021)
64. Karlin, S., Taylor, H.M.: A Second Course in Stochastic Processes. Academic Press, New York (1981)
65. Kim, J., Ward, A.R.: Dynamic scheduling of a G I/G I/1+ G I queue with multiple customer classes.

Queueing Syst. 75(2–4), 339–384 (2013)
66. Kogan, Y., Lipster, R.: Limit non-stationary behavior of large closed queueing networks with bottle-

necks. Queueing Syst. 14(1–2), 33–55 (1993)
67. Kogan, Y., Liptser, R., Smorodinskii, A.V.: Gaussian diffusion approximation of closedMarkovmodels

of computer networks. Probl. Inform. Transm. 22(1), 38–51 (1986)
68. Korolko, N., Woodard, D., Yan, C., Zhu, H.: Dynamic pricing and matching in ride-hailing platforms.

Nav. Res. Logist. 67(8), 705–724 (2020)
69. Krichagina, A.A., Puhalskii, E.V.: A heavy-traffic analysis of a closed queueing system with a G I/∞

service center. Queueing Syst. 25(1–4), 235–280 (1997)
70. Kumar, S.: Two-server closed networks in heavy traffic: diffusion limits and asymptotic optimality.

Ann. Appl. Probab. 10(3), 930–961 (2000)
71. Kumar, R., Lewis, M.E., Topaloglu, H.: Dynamic service rate control for a single-server queue with

Markov-modulated arrivals. Nav. Res. Logist. 60(8), 661–677 (2013)
72. Lu, S.H., Kumar, P.R.: Distributed scheduling based on due dates and buffer priorities. IEEE Trans.

Autom. Control 36, 1406–1416 (1991)
73. Lu, A., Frazier, P., Kislev, O.: Surge pricing moves Uber’s driver partners. In: Proceedings of the 2018

ACM Conference on Economics and Computation (2018)
74. Mandl, P.: Analytic Treatment of One-Dimensional Markov Processes. Springer, New York (1968)
75. Momcilovic, P., Mandelbaum, A., Carmeli, N., Armony, M., Yom-Tov, G.: Resource-driven activity-

networks (RANs): a modelling framework for complex operations. Working Paper (2023)
76. New York City Taxi and Limousine Commission: 2014 Taxicab Fact Book. URL https://www.nyc.

gov/assets/tlc/downloads/pdf/2014_tlc_factbook.pdf (2014)
77. Özkan, E.: Joint pricing and matching in ride-sharing systems. Eur. J. Oper. Res. 287(3), 1149–1160

(2020)
78. Özkan, E., Ward, A.R.: Dynamic matching for real-time ridesharing. Stoch. Syst. 10(1), 29–70 (2020)
79. Polyanin, A.D., Zaitsev, V.F.: Handbook of Exact Solutions for Ordinary Differential Equations, 2nd

edn. CRC Press, Boca Raton (2003)
80. Rubino, M., Ata, B.: Dynamic control of a make-to-order, parallel-server system with cancellations.

Oper. Res. 57(1), 94–108 (2009)
81. Rybko, A.N., Stolyar, A.L.: Ergodicity of stochastic processes that describe functioning of open queue-

ing networks. Probl. Inform. Transm. 28, 3–26 (1992). ((in Russian))
82. Smorodinskii, A.V.: Asymptotic distribution of the queue length of one service system (in Russian).

Avtom. Telemekhanika 2, 92–99 (1986)
83. Stidham, S., Weber, R.R.: Monotonic and insensitive optimal policies for control of queues with

undiscounted costs. Oper. Res. 37(4), 611–625 (1989)

123

https://www.nyc.gov/assets/tlc/downloads/pdf/2014_tlc_factbook.pdf
https://www.nyc.gov/assets/tlc/downloads/pdf/2014_tlc_factbook.pdf

66 Queueing Systems (2024) 106:1–66

84. Stolyar, A.L.: MaxwWeight scheduling in a generalized switch: state space collapse and workload
minimization in heavy traffic. Ann. Appl. Probab. 14(1), 1–53 (2004)

85. Varma, S.M., Bumpensanti, P., Maguluri, S.T., Wang, H.: Dynamic pricing and matching for two-sided
queues. Oper. Res. 71(1), 83–100 (2022)

86. Wang, X., Agatz, N., Erera, A.: Stable matching for dynamic ride-sharing systems. Transp. Sci. 52(4),
850–867 (2017)

87. Williams, R.J.: Diffusion approximations for open multiclass queueing networks: sufficient conditions
involving state space collapse. Queueing Syst. 30(1–2), 27–88 (1998)

88. Yang, P., Iyer, K., Frazier, P.: Mean field equilibria for resource competition in spatial settings. Stoch.
Syst. 8(4), 307–334 (2018)

89. Zhang, R., Pavone, M.: Control of robotic mobility-on-demand systems: a queueing-theoretical per-
spective. Int. J. Robot. Res. 35(1–3), 186–203 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	A queueing model of dynamic pricing and dispatch control for ride-hailing systems incorporating travel times
	Abstract
	1 Introduction
	2 Literature review
	3 Model

	4 Brownian control problem
	5 Equivalent workload formulation
	6 Solving the equivalent workload formulation
	7 Solution to the Bellman equation
	8 Proposed policy
	8.1 Proposed pricing policy
	8.2 Proposed dispatch policy

	9 Simulation study
	9.1 Pricing policy
	9.2 Dispatch policy
	9.3 Static dispatch policy
	9.4 Closest driver policy

	10 Concluding remarks
	Appendices
	A Derivations
	A.1 Formal derivation of the Brownian control problem
	A.2 Derivation of Eq. (143)

	B Miscellaneous proofs
	References

